Чистое железо получают различными методами. Наибольшее значение имеют метод термического разложения пентакарбонила железа (см. § 193) и электролиз водных растворов его солей.

Во влажном воздухе железо быстро ржавеет, т. е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа(III):

При недостатке кислорода или при его затрудненном доступе образуется смешанный оксид Fe 3 O 4 (FeO·Fe 2 O 3):

Железо растворяется в соляной кислоте любой концентрации:

Аналогично происходит растворение в разбавленной серной кислоте:

В концентрированных растворах серной кислоты железо окисляется до железа(III):

Однако в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит.

В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

При высоких концентрациях HNO 3 растворение замедляется и железо становится пассивным.

Для железа характерны два ряда соединений: соединения железа(II) и соединения железа(III). Первые отвечают оксиду железа (II), или закиси железа, FeO, вторые - оксиду железа(III), или окиси железа, Fe 2 O 3 .

Кроме того, известны соли железной кислоты H 2 FeO 4 , в которой степень окисленности железа равна +6.

Соединения железа(II).

Соли железа(II) образуются при растворении железа в разбавленных кислотах, кроме азотной. Важнейшая из них - сульфат железа(II), или железный купорос, FeSO 4 ·7H 2 O, образующий светло-зеленые кристаллы, хорошо растворимые в воде. На воздухе железный купорос постепенно выветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа(III).

Сульфат железа(II) получают путем растворения обрезков стали в 20-30%-ной серной кислоте:

Сульфат железа(II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей.

При нагревании железного купороса выделяется вода и получается белая масса безводной соли FeSO 4 . При температурах выше 480°C безводная соль разлагается с выделением диоксида и триоксида серы; последний во влажном воздухе образует тяжелые белые пары серной кислоты:

При взаимодействии раствора соли железа(II) со щелочью выпадает белый осадок гидроксида железа(II) Fe(OH) 2 , который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа (III)

Безводный оксид железа(II) FeO можно получить в виде черного легко окисляющегося порошка восстановлением оксида железа(III) оксидом углерода(II) при 500°C:

Карбонаты щелочных металлов осаждают из растворов солей железа(II) белый карбонат железа(II) FeCO 3 . При действии воды, содержащей CO 2 , карбонат железа, подобно карбонату кальция, частично переходит в более растворимую кислую соль Fe(HCO 3)2 . В виде этой соли железо содержится в природных железистых водах.

Соли железа (II) легко могут быть переведены в соли железа (III) действием различных окислителей - азотной кислоты, перманганата калия, хлора, например:

Ввиду способности легко окисляться, соли железа(II) часто применяются как восстановители.

Соединения железа (III).

Хлорид железа (III) FeCl 3 представляет собой темно-коричневые с зеленоватым отливом кристаллы. Это вещество сильно гигроскопично; поглощая влагу из воздуха, оно превращается в кристаллогидраты, содержащие различное количество воды и расплывающиеся на воздухе. В таком состоянии хлорид железа (III) имеет буро-оранжевый цвет. В разбавленном растворе FeCl 3 гидролизуется до основных солей. В парах хлорид железа (III) имеет структуру, аналогичную структуре хлорида алюминия (стр. 615) и отвечающую формуле Fe 2 Cl 6 ; заметная диссоциация Fe 2 Cl 6 на молекулы FeCl 3 начинается при температурах около 500°C.

Хлорид железа (III) применяют в качестве коагулянта при очистке воды, как катализатор при синтезах органических веществ, в текстильной промышленности.

Сульфат железа (III) Fe 2 (SO 4)3 - очень гигроскопичные, расплывающиеся на воздухе белые кристаллы. Образует кристаллогидрат Fe 2 (SO 4)3 ·9H 2 O (желтые кристаллы). В водных растворах сульфат железа (III) сильно гидролизован. С сульфатами щелочных металлов и аммония он образует двойные соли - квасцы, например железоаммонийные квасцы (NH 4)Fe(SO 4)2 ·12H 2 O - хорошо растворимые в воде светло-фиолетовые кристаллы. При прокаливании выше 500°C сульфат железа (III) разлагается в соответствии с уравнением:

Сульфат железа (III) применяют, как и FeCl 3 , в качестве коагулянта при очистке воды, а также для травления металлов. Раствор Fe 2 (SO 4)3 способен растворять Cu 2 S и CuS с образованием сульфата меди(II) это используется при гидрометаллургическом получении меди.

При действии щелочей на растворы солей железа (III) выпадает красно-бурый гидроксид железа (III) Fe(OH) 3 , нерастворимый в избытке щелочи.

Гидроксид железа (III) - более слабое основание, чем гидроксид железа (II) это выражается в том, что соли железа (III) сильно гидролизуются, а со слабыми кислотами (например, с угольной, сероводородной) Fe(OH) 3 солей не образует. Гидролизом объясняется и цвет растворов солей железа (III): несмотря на то, что Fe 3+ почти бесцветен, содержащие его растворы окрашены в желто-бурый цвет, что объясняется присутствием гидроксо-ионов железа или молекул Fe(OH) 3 , которые образуются благодаря гидролизу:

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза.

При прокаливании гидроксид железа (III), теряя воду, переходит в оксид железа (III), или окись железа, Fe 2 O 3 . Оксид железа (III) встречается в природе в виде красного железняка и применяется как коричневая краска - железный сурик, или мумия.

Характерной реакцией, отличающей соли железа (III) от солей железа (II), служит действие роданида калия KSCN или роданида аммония NH 4 SCN на соли железа. Раствор роданида калия содержит бесцветные ионы SCN - , которые соединяются с ионами Fe(III), образуя кроваво-красный, слабо диссоциированный роданид железа(III) Fe(SCN) 3 . При взаимодействии же с роданидами ионов железа (II) раствор остается бесцветным.

Цианистые соединения железа. При действии на растворы солей железа (II) растворимых цианидов, например цианида калия, получается белый осадок цианида железа(II):

В избытке цианида калия осадок растворяется вследствие образования комплексной соли K 4 гексацианоферрата (II) калия

Гексацианоферрат(II) калия K 4 ·3H 2 O кристаллизуется в виде больших светло-желтых призм. Эта соль называется также желтой кровяной солью. При растворении в воде соль диссоциирует на ионы калия и чрезвычайно устойчивые комплексные ионы 4- . Практически такой раствор совершенно не содержит ионов Fe 2+ и не дает реакций, характерных для железа(II).

Гексацианоферрат (II) калия служит чувствительным реактивом на ионы железа(III), так как ионы 4- , взаимодействуя с ионами Fe 3+ , образуют нерастворимую в воде соль гексацианоферрат(II) железа (III) Fe 4 3 характерного синего цвета; эта соль получила название берлинской лазури:

Берлинская лазурь применяется в качестве краски.

При действии хлора или брома на раствор желтой кровяной соли анион ее окисляется, превращаясь в 3-

Соответствующая этому аниону соль K 3 называется гексацианоферратом(III) калия, или красной кровяной солью. Она образует красные безводные кристаллы.

Если подействовать гексацианоферратом(III) калия на раствор соли железа(II), то получается осадок гексацианоферрата (III), железа (И) (турнбулева синь), внешне очень похожий на берлинскую лазурь, но имеющий иной состав:

С солями железа (III) K 3 образует зеленовато-бурый раствор.

В большинстве других комплексных соединений, как и в рассмотренных цианоферратах, координационное число железа(II) и железа(III) равно шести.

Ферриты. При сплавлении оксида железа(III) с карбонатами натрия или калия образуются ферриты - соли не полученной в свободном состоянии железистой кислоты HFeO 2 , например феррит натрия NaFeO 2:

При растворении сплава в воде получается красно-фиолетовый раствор, из которого действием хлорида бария можно осадить нерастворимый в воде феррат бария BaFeO 4 .

Все ферраты - очень сильные окислители (более сильные, чем перманганаты). Соответствующая ферратам железная кислота H 2 FeO 4 и ее ангидрид FeO 3 в свободном состоянии не получены.

Карбонилы железа. Железо образует летучие соединения с оксидом углерода, называемые карбонилами железа. Пентакарбонил железа Fe(CO) 5 представляет собой бледно-желтую жидкость, кипящую при 105°C, нерастворимую в воде, но растворимую во многих органических растворителях. Fe(CO) 5 получают пропусканием СО над порошком железа при 150-200°C и давлении 10 МПа. Примеси, содержащиеся в железе, не вступают в реакции с СО, вследствие чего получается весьма чистый продукт. При нагревании в вакууме пентакарбонил железа разлагается на железо и СО; это используется для получения высокочистого порошкового железа - карбонильного железа (см. § 193).

Природа химических связей в молекуле Fe(CO) 5 рассмотрена на стр. 430.

<<< Назад
Вперед >>>

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).
Простое вещество железо (CAS-номер: 7439-89-6) - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.
На самом деле железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.
В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра.

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза, укр. залізо, ст.-слав. желѣзо, болг. желязо, сербохорв. жељезо, польск. żelazo, чеш. železo, словен. železo).
Одна из этимологий связывает праслав. *želězo с греческим словом χαλκός, что означало железо и медь, согласно другой версии *želězo родственно словам *žely «черепаха» и *glazъ «скала», с общей семой «камень». Третья версия предполагает древнее заимствование из неизвестного языка.
Романские языки (итал. ferro, фр. fer, исп. hierro, порт. ferro, рум. fier) продолжают лат. ferrum . Латинское ferrum (Германские языки заимствовали название железа (готск. eisarn,англ. iron, нем. Eisen, нидерл. ijzer,дат. jern, швед. järn) из кельтских.
Пракельтское слово *isarno- (> др.-ирл. iarn, др.-брет. hoiarn), вероятно, восходит к пра-и.е. *h1esh2r-no- «кровавый» с семантическим развитием «кровавый» > «красный» > «железо». Согласно другой гипотезе данное слово восходит к пра-и.е. *(H)ish2ro- «сильный, святой, обладающий сверхъестественной силой».
Древнегреческое слово σίδηρος, возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра.
Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

Получение

В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
В печи углерод в виде кокса окисляется до монооксида углерода. Данный оксид образуется при горении в недостатке кислорода. В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III). Флюс добавляется для избавления от нежелательных примесей (в первую очередь от силикатов; например кварц) в добываемой руде. Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Для устранения других примесей используют другие флюсы.
Действие флюса (в данном случае карбонат кальция) заключается в том, что при его нагревании он разлагается до его оксида. Оксид кальция соединяется с диоксидом кремния, образуя шлак - метасиликат кальция. Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности - это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.
Излишки углерода и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.
Химически чистое железо получается электролизом растворов его солей.

В данной статье будет рассказано о железе, его химических и физических свойствах. Они имеют большое значение для определения способа перевозки железа, его условий хранения, получения, выплавки и т. д.

Железо является одним из наиболее популярных металлов. Но зачастую так называют его сплав с какой-либо примесью, например, с углеродом. Это помогает сохранить пластичность и мягкость самого металла. Показателем в таком составе будет количество чистого металла, углерода и примесей.

Для выплавки стали применяют метод металлизации, который помогает изделию стать более устойчивым к внешним воздействиям, таким как эрозия, коррозия, износ. При этом содержание дополнительной примеси может быть разным.

Углерод

Процент содержания углерода в сплаве может колебаться от 0,2 % до 10%. Это зависит от способа восстановления железа. При этом само количество и степень металлизации могут варьироваться очень широко. В газообразно-восстановительных процессах нитевидный углерод осаждается из газовой фазы на поверхность железа. Но реакция до конца не завершается, и продукт, подвергшийся металлизации, имеет на своей поверхности и в порах сажу, образовавшуюся из углерода.

Фосфор

В процессе прямого восстановления железа количество фосфора не снижается, а процент его содержания при металлизации равен его количеству в исходном сырье. Понизить это может полное обогащение руды, используемой для процесса восстановления. Причем соотношение фосфора и железа зависит от увеличения процента железа, которое ведет к снижению процента содержания фосфора. В большинстве составов он равен 0,010-0,020%, редко 0,030%.

Сера

Сырьем для прямого восстановления железа часто служат окатыши, не подвергшиеся флюсованию, поскольку в них удалена большая часть серы путем окислительного обжига, и тогда главным источником серы будет являться восстановитель.

При исходном твердом восстановителе количество серы в составе металлизованного материала может оказаться высоким. Тогда его понижения можно достичь добавлением известняка и доломита.

В случае газообразного восстановителя на выходе получается продукт с низким процентом серы, до 0,003.

Азот и водород

Азот содержится в малых количествах в руде, что определяет его небольшой процент и в металлизованных материалах, до 0,003%. Количество водорода доходит до 150 куб. см. на 100 гр., причем в стали его процент такой же, как и при выплавке лома.

Цветные металлы

Количество цветных металлов, а именно никеля, хрома, свинца, меди, имеет состав железа прямого восстановления, и часто оно низкое благодаря чистоте сырья. Такой показатель губчатого железа можно сравнить с чугуном. Разница будет лишь в том, что в чугуне есть хром в восстановленном виде.

Титан, хром, ванадий находятся в металлизованных окатышах в составе окислов. В процессе плавки достаточно просто организовать возможность, мешающую восстановить их из шлака. Это дает способность получить металл, в составе которого будет низкий процент содержания титана, хрома и, возможно, марганца.

Железо, состав которого включает в себя олово, свинец, цинк и другие цветные металлы, причем в небольшом и устойчивом проценте, образуется при окислительном процессе обжига окатышей, прямом восстановлении железа и плавке. Все это благодаря малому количеству примесей названных металлов в руде, а также частичному их удалению.

Определено, что удаление цинка возможно при металлизации и плавке. Свинец испаряется во время обжига и восстановления, но в небольшой степени, а главным будет плавильный процесс. Олово, как и сурьма, с трудом удаляются из состава из-за низкого их содержания, или вообще переходят в металл. Исследования, проведенные лабораторным путем, показали, что то, из чего состоит железо, определяется количеством цветных металлов в качестве примесей. Их процент колеблется от менее чем 0,01, как в стали с содержанием никеля, хрома и меди, так до менее 0,001 – в составах с оловом, свинцом, мышьяком, сурьмой и цинком.

Как материал стало известно с 3–4 тыс. до н. э. Поначалу в поле зрения человека попало метеоритное железо, так что в те времена оно ценилось выше золота. Затем хетты освоили разработку осадочных месторождений, а римляне научились плавить чугун.

С тех пор область использования металла только расширялась. И поэтому сегодня мы поговорим о применении железа и его соединений в жизни человека: в быту, народном хозяйстве, промышленности и об использовании металла в иных сферах.

Итак, давайте узнаем, почему железо получило наибольшее применение в металлургии.

Под железом зачастую подразумевают вовсе не вещество как таковое, а низкоуглеродистую электротехническую сталь – так называется сплав металла по ГОСТ. Действительно чистое железо получить непросто, и используется оно исключительно для производства магнитных материалов.

Железо является ферромагнетиком, то есть, намагничивается в присутствии магнитного поля. Однако это его свойство сильно зависит от примесей и структуры металла. абсолютного чистого железа в 100–200 раз превышают аналогичные показатели технической стали. То же самое можно сказать о величине зерна: чем крупнее зерно, тем лучше магнитные свойства вещества. Имеет значение и механическая обработка, хотя ее влияние и не столь впечатляющее. Только такое железо применяют для получения всех магнитных материалов для электротехники и магнитоприводов.

Во всех остальных областях народного хозяйства находит свое применение сталь и чугун, так что, говоря о применении железа, говорят об использовании стали.

Про способы применения сплавов железа расскажет видеоролик ниже:

Соединения

Все металлы, используемые в производстве, делят на цветные и черные. Черные – это сплавы железа, в частности, сталь и чугун, остальные – , серебряные, относятся к цветным. Соответственно, занимающееся выплавкой чугуна и стали, называется черной металлургией, а всех остальных – цветной. На долю черной металлургии приходится 95% всех металлургических процессов. Разделяются черные сплавы таким образом:

  • сталь – сплав железа с углеродом и другими ингредиентами, чья массовая доля не превышает 2,14%. Углерод придает стали пластичность и твердость. В состав могут входить также марганец, фосфор, сера и так далее;
  • чугун – сплав с углеродом, где допускается большее содержание элемента – до 4,3%. Причем чугуны отличаются по своим свойствам в зависимости от того, в каком виде сплав содержит углерод: если вещество вступило в реакцию с железом, получают белый чугун, если включено в виде графита – серый;
  • феррит – железо с минимальной примесью углерода и других элементов – 0,04%. Собственно, это и есть химически чистое железо;
  • перлит – не сплав, а механическая смесь карбида железа и феррита. Свойства его заметно отличаются от свойств металла;
  • аустенит – раствор углерода в железе с долей первого до 0,8%. Аустенит отличается пластичностью, магнитными свойствами не обладает.

Про методы применения железа в виде стали читайте ниже.

Стали

Конечно, наибольшее применение находят сталь и чугун, а их использование зависит от доли углерода в составе. По этому признаку различают углеродистые и легированные стали. В первом случае примеси носят постоянный характер, то есть, попадают в сплав из-за особенностей процесса выплавки. В легированные добавки вводят специально для придания материалу особых свойств. В качестве легирующих элементов применяют ванадий, хром, и так далее.

Углеродистые стали разделяются на 3 группы:

  • малоуглеродистые – доля элемента менее 0,25%, наиболее ковкие и пластичные;
  • среднеуглеродистые – с долей углерода до 0,6%;
  • высокоуглеродистые – содержание элемента превышает 0,6%.

Легированные стали тоже составляют собой 3 группы:

  • низколегированные – массовая доля всех компонентов составляет 2,5%:
  • среднелегированные – здесь суммарное содержание может достигать 10%;
  • высоколегированные – доля легирующих элементов превышает 10%.

Легированные стали обычно являются материалом для инструментов и машинных узлов, так как введение дополнительных ингредиентов повышает прочность сплава, придает ему жаростойкость или коррозионную стойкость. Углеродистые, в основном, применяют для каркасных сооружений, изготовления водопровода и так далее.

Все стали можно разделить по назначению:

  • строительные – в основном это высоко- или среднеуглеродистые стали. Сплавы применяются для всех строительных работ: от сооружения металлических каркасов до изготовления предметов быта и кровельного листа;
  • конструкционные – низкоуглеродистые стали с долей элемента до 0,75%. Это материал для всех отраслей машиностроения – от велосипедов до морских судов;
  • инструментальная – низкоуглеродистая, но отличается от конструкционной еще и очень низким содержанием марганца – не более 0,4%. Это основа измерительного, штампованного, режущего инструмента;
  • специальные стали – разделяются на 2 подвида: с особыми физическими качествами – электротехническая сталь с заданными магнитными свойствами, и с особыми химическими – жаропрочная, нержавеющая и так далее.

Применение легированных сталей определяется их качествами.

  • Так, нержавеющая сталь используется в строительстве и машиностроении, где требуется более высокая, чем обычно стойкость к коррозии.
  • Жаропрочные сплавы «работают» в условиях высоких температур – турбины, магистрали отопления. Жаростойкие – не окисляются при высоких температурах, что важно для многих рабочих узлов в теплотехнике.

Еще одно разделение сплавов – по качеству. Этот параметр определяет содержание фосфора и серы – вредных примесей, которые уменьшают прочность сплава. Различают 4 вида:

  • сталь обыкновенного качества включает до 0,06% серы и 0,07% фосфора. Это обычные строительные материалы, применяемые при изготовлении труб, швеллеров, уголков, профилей и другого металлопроката;
  • качественная – допускает долю серы до 0,035% и такую же долю фосфора. Также применяется в производстве металлопроката, корпусов, деталей машин и некоторых марок инструментальной стали;
  • высококачественная – доля серы и фосфора не превышает 0,025%, соответственно. К этой категории относят инструментальные и конструкционные стали, применяемые в условиях высокой нагрузки;
  • особовысококачественная – содержание серы менее 0,015%, фосфора – менее 0,025%. Этот материал отличается максимальной стойкостью к износу. Некоторые марки выделяются в особую категорию и маркируются соответствующим образом, например, шарикоподшипниковая сталь, или быстрорежущая – незаменимый элемент качественного режущего инструмента.

О применении чугуна и стали расскажет видео ниже:

Чугун

Применение чугуна не намного меньше, поскольку его механические качества вполне сопоставимы со многими марками стали. В соответствии с категорией чугуна различается и применение:

  • серый чугун – углерод в железе находится в виде графитовых пластинок. Отличается хорошими литьевыми свойствами и малой усадкой. Но наиболее примечательное его качество – стойкость к переменным нагрузкам. Серый чугун используют при изготовлении прокатных станков, станин, подшипников, маховиков, поршневых колец, деталей тракторных и автомобильных двигателей, корпусов и так далее;
  • белый чугун – углерод связан с железом. Почти целиком используется для получения стали;
  • высокопрочный чугун – углерод находится в виде включений шаровидной формы. Такая форма обеспечивает высокую стойкость к нагрузке на растяжение и изгиб. Из чугуна изготавливают детали турбин, коленчатые валы тракторов и автомобилей, шестерни, изложницы и так далее.

Чугун также можно легировать и получать сплав с самыми разными свойствами.

  • Износостойкий чугун применяется для изготовления насосных деталей, тормозов, дисков сцепления.
  • Жаростойкий применяется при сооружении доменных, мартеновских, термических печей.
  • Жаропрочный используется при сооружении газовых печей, при изготовлении компрессорного оборудования, дизельных двигателей.

Использование в строительстве

Сталь и чугун уникальным образом сочетают прочность, эксплуатационную долговечность и доступную стоимость. Поэтому заменить его каким-либо другим конструкционным материалом не представляется возможным. В строительстве продукция металлопроката является базовой наряду с бетоном и кирпичом.

Капитальное строительство

Металлу можно придать любую форму: от самой простой – прут, до причудливой сложной – кованое железо. В строительстве находят применение для всех вариантов.

Кроме того, что сталь сама по себе отличается прочностью, тем более после специальной обработки, в этой области активно применяется и еще одна особенность. Дело в том, что профильные изделия из металла ничем не уступают по прочности цельной детали таких же размеров и формы. А это значительно уменьшает материалоемкость строительных элементов, уменьшает их стоимость, снижает вес и так далее. В строительстве такое сочетание исключительно важно.

Применяемый металлопрокат разделяют на 3 основные группы.

  • Фасонный – швеллеры, двутавры, угловой и обычный профиль, а также перфорированный. Сюда же относят и специальный профиль, применяемый, например, в шахтных выработках. Фасонный металлопрокат применяют при возведении всех типов каркасов для любого сооружения – от зданий до мостов и плотин. Его же используют при необходимости усилить конструкцию.
  • Сортовой – арматура, балки, трубы, круги и прочее. Эти элементы используются едва ли не чаще, чем фасонный и очень многообразны:
    • арматура – стальные прутья разного диаметра, гладкие и с ребрами. Арматура предназначена для повышения прочности здания, причем показателем является не только стойкость к стационарной нагрузке, но и повышение прочности при нагрузке на растяжение и изгиб. Арматуру используют при возведении фундамента, перекрытий, усиления стен, а также при упрочнении и других конструктивных узлов – лестниц, например;
    • трубы – причем используются и круглые, и профильные. Предпочтительнее трубы прямоугольного квадратного сечения, поскольку их сварка и крепление более проста, чем в случае круглых, а стойкость к нагрузкам такая же;
    • балка – вариант цельнолитого изделия, когда требуется прочность при самых высоких нагрузках.
  • Листовой прокат – листы горячего и холодного проката с покрытием и без. Это кровельные листы, и так далее. Профнастил применяют не только для устройства кровли, но и при сооружении разнообразных ограждений, поскольку материал соединяет относительную легкость с высокой прочностью и стойкостью к перепадам температур.

Нержавеющие стали для листового проката применяют редко, поскольку стоимость сплава выше.

Отделочные работы

Основой их часто выступают металлические изделия – и трубы, и профиль, и листовое железо.

  • Трубы необычных форм активно применяют в современных интерьерах. Из них сооружают спальные блоки, перекрытия и перегородки в комнате, ограждения как лестничные, так и уличные, используют даже в производстве мебели. Здесь трубы, конечно, подбирают с красивым покрытием – , хром, хотя встречаются и окрашенные изделия.
  • Профиль – ниши и декоративные выступы, колонны и потолки, отделка стен и каминов и прочее и прочее. Все, что обшивается и облицовывается гипсокартоном, пленкой, вагонкой, панелями – абсолютно все имеет каркас из металлического профиля. В изготовлении мебели – шкафов-купе, например, также применяется специализированный профиль. Стальной по сравнению с отличается куда большей прочностью и долговечностью.
  • Металл может выступать не только каркасом, но отделочным материалом. Реечные, кассетные, панельные потолки исключительно разнообразны, интересны и долговечны. И рейки, и панели могут изготавливаться из , но если требуется долговечное и прочное решение – например, для отделки потолка железнодорожного вокзала, где требуется стойкость к вибрациям, используется, конечно же, сталь.
  • Двери – к отделочным работам уже не относятся, а выступают, скорее, элементом системы защиты. Входные двери из стали достаточной толщины являются самым популярным и надежным способом предупредить взлом жилища. То же самое можно сказать о гаражных воротах, например, или воротах во двор.
  • Лестничные конструкции – металлические лестницы очень разнообразны: от приставной или складной мансардной, до капитального сооружения на 2 этаж. Такой вариант прочен и надежен, при этом может быть очень красив. Современные модульные лестницы комбинируются со стеклом, прозрачным пластиком или даже деревом, а каменную лестницу могут украсить кованые перила.

Коммуникации

Несмотря на то что стальной трубопровод активно вытесняет пластиковые и металлопластиковые, до полной сдачи позиций еще чрезвычайно далеко. Причина проста: с прочностью и стойкостью стали мало что сравнится.

  • Водопровод и канализация – если для обслуживания частного дома или квартиры можно подключать пластиковые изделия, то о магистрали и даже трубопроводе, обслуживающем многоквартирный дом этого сказать нельзя. Допускаются только железные трубы, причем соответствующие твердо установленным стандартам.
  • Газопровод – вариантов нет, используется только сталь.
  • Системы отопления – в здании система может включать пластиковые трубы. Городские и районные магистрали, не говоря уже о трубопроводе, непосредственно обслуживающем котельную, могут быть только железными. Начальная температура нагретой воды намного выше той, которую может выдержать пластиковые водоводы, не говоря уж о давлении.
  • Батареи и радиаторы, как правило, тоже используются железные или чугунные – у чугуна выше теплоемкость и стойкость к гидроударам. Какими бы современными вариантами отопители не заменялись, сталь в конструкции все равно наличествует. Электрические радиаторы – конвекторные, масляные, всегда изготавливаются из стали, поскольку последняя, обладая высокой теплопроводностью, моментально отдает тепло воздуху.
  • Кабели – проводку в доме чаще всего прячут в пластиковые короба. Однако силовые кабели с большим сечением защищаются металлическими трубами.
  • Дымоходы – стальные трубы являются вариантом самым простым, доступным и легким. Для их изготовления применяют специальную жаростойкую сталь, причем устойчивую к коррозии.

Оборудование и предметы быта

Любая техника, устанавливаемая в доме, производится из стали.

  • Отопительные котлы – на каком бы топливе аппараты не работали, корпуса их всегда изготавливаются из стали. В твердотопливных печах есть чугунные детали.
  • Кухонное оборудование – плиты, духовки, микроволновки, пароварки и так далее имеют стальные корпуса и детали. На кухне сталь является и востребованным отделочным материалом: рабочие столешницы, например, отделка фартука. Сталь – материал очень декоративный и лишь кажется простым.
  • Стиральные машины, сушилки и посудомойки также не обходятся без железа.
  • Сантехника из стали применяется редко – из-за высокой теплопроводности, а вот чугунные ванны и умывальники устанавливают до сих пор. Материал лучше хранит тепло и очень долговечен.
  • Посуда и столовые приборы, подставки и вазы, держатели и фурнитура, электрооборудование и мелкие аксессуары – места, где железо не используется, на пальцах можно пересчитать.
  • Кованое железо – декоративные предметы такого рода являются настоящим произведением искусства, особенно когда речь идет о горячей ковке, при которой каждое изделие, каждая деталь изготавливается вручную и только один раз. Кованые решетки, перила, камины, ограждения украшают дворцы и современные павильоны, и, конечно, жилые квартиры.

Железо – главный конструкционный материал. В строительстве сталь и чугун являются базовыми материалами наряду со строительным камнем. Применение и разнообразие сплавов не поддается описанию.

Еще больше полезной информации по вопросу применения железа содержится в этом видео:

Подробности Категория: Просмотров: 9555

ЖЕЛЕЗО , Fe, химический элемент, атомный вес 55,84, порядковый номер 26; расположен в VIII группе периодической системы в одном ряду с кобальтом и никелем, температура плавления - 1529°С, температура кипения - 2450°С; в твердом состоянии имеет синевато-серебристый цвет. В свободном виде железо встречается лишь в метеоритах, которые, однако, содержат примеси Ni, Р, С и других элементов. В природе соединения железа широко распространены повсеместно (почва, минералы, гемоглобин животных, хлорофилл растений), гл. обр. в виде окислов, гидратов окислов и сернистых соединений, а также углекислого железа, из которых и состоит большинство железных руд.

Химически чистое железо получается путем нагревания щавелевокислого железа, при чем при 440°С сначала получается матовый порошок закиси железа, обладающий способностью воспламеняться на воздухе (т. н. пирофорическое железо); при последующем восстановлении этой закиси образовавшийся порошок приобретает серый цвет и теряет пирофорические свойства, переходя в металлическое железо. При восстановлении закиси железа при 700°С железо выделяется в виде мелких кристаллов, которые затем сплавляются в вакууме. Другой способ получения химически чистого железа состоит в электролизе раствора солей железа, например FeSО 4 или FeCl 3 в смеси с MgSО 4 , СаСl 2 или NH 4 Cl (при температуре выше 100°С). Однако, при этом железо окклюдирует значительное количество электролитического водорода, вследствие чего приобретает твердость. При прокаливании до 700°С водород выделяется, и железо становится мягким и режется ножом, как свинец (твердость по шкале Моса - 4,5). Весьма чистое железо может быть получено алюминотермическим путем из чистой окиси железо. (см. Алюминотермия). Хорошо образованные кристаллы железа встречаются редко. В полостях больших кусков литого железа иногда образуются кристаллы октаэдрической формы. Характерным свойством железа является его размягчаемость, тягучесть и ковкость при температуре, значительно более низкой, чем температура плавления. При действии на железо крепкой азотной кислоты (не содержащей низших окислов азота), железо покрывается налетом окислов и становится нерастворимым в азотной кислоте.

Соединения железа

Легко соединяясь с кислородом, железо образует несколько окислов: FeO - закись железа, Fe 2 О 3 - окись железа, FeО 3 - ангидрид железной кислоты и FeО 4 – ангидрид наджелезной кислоты. Кроме того, железо образует еще окисел смешанного типа Fe 3 О 4 - закись-окись железа, т. н. железную окалину. В сухом воздухе, однако, железо не окисляется; ржавчина представляет собой водные окислы железа, образующиеся при участии влаги воздуха и СО 2 . Закиси железа FeO соответствует гидрат Fe(OH) 2 и целый ряд солей двухвалентного железа, способных при окислении переходить в соли окиси железа, Fe 2 О 3 , в которой железо проявляет себя в качестве трехвалентного элемента; на воздухе гидрат закиси железа, отличающийся сильными восстановительными свойствами, легко окисляется, переходя в гидрат окиси железа. Гидрат закиси железа слабо растворяется в воде, и раствор этот имеет явственно щелочную реакцию, свидетельствующую об основном характере двухвалентного железа. Окись железа встречается в природе (см. Железный сурик), искусственно же м. б. получена в виде красного порошка при прокаливании железного порошка и при обжигании серного колчедана для получения сернистого газа. Безводная окись железа, Fе 2 O 3 , м. б. получена в двух модификациях, причем переход одной из них в другую происходит при нагревании и сопровождается значительным выделением тепла (самонакаливанием). При сильном прокаливании Fe 2 О 3 выделяет кислород и переходит в магнитную закись-окись, Fe 3 О 4 . При действии щелочей на растворы солей трехвалентного железа выпадает осадок гидрата Fe 4 О 9 H 6 (2Fe 2 О 3 ·3Н 2 О); при кипячении его с водой образуется гидрат Fe 2 О 3 ·Н 2 О, трудно растворяющийся в кислотах. Железо образует соединения с различными металлоидами: с С, Р, S, с галоидами, а также и с металлами, например с Mn, Cr, W, Сu и др.

Соли железа разделяются на закисные - двухвалентного железа (ферро-соли) и на окисные - трехвалентного железа (ферри-соли).

Соли закисного железа . Хлористое железо , FeCl 2 , получается при действии сухого хлора на железо, в виде бесцветных листочков; при растворении железа в НСl хлористое железо получается в виде гидрата FeCl 2 ·4H 2 O и применяется в виде водных или спиртовых растворов в медицине. Йодистое железо , FeJ 2 , получается из железа и йода под водой в виде зеленых листочков и применяется в медицине (Sirupus ferri jodati); при дальнейшем действии йода образуется FeJ 3 (Liquor ferri sesquijodati).

Сернокислое закисное железо, железный купорос , FeSО 4 ·7H 2 О (зеленые кристаллы) образуется в природе в результате окисления пирита и серных колчеданов; эта соль образуется также в качестве побочного продукта при производстве квасцов; при выветривании или при нагревании до 300°С переходит в белую безводную соль - FeSО 4 ; образует также гидраты с 5, 4, 3, 2 и 1 частицами воды; легко растворяется в холодной воде (в горячей до 300%); раствор имеет кислую реакцию вследствие гидролиза; на воздухе окисляется, особенно легко в присутствии другого окисляющегося вещества, например, щавелевокислых солей, которые FeSО 4 вовлекает в сопряженную реакцию окисления, обесцвечивает КМnO 4 ; при этом процесс протекает по следующему уравнению:

2KMnO 4 + 10FeSO 4 +8H 2 SO 4 = 2MnSО 4 + K 2 SО 4 + 5Fe 2 (SO 4) 2 + 8Н 2 О.

Для этой цели, однако, применяется более постоянная на воздухе двойная соль Мора (NH 4) 2 Fe(SО 4) 2 ·6Н 2 О. Железный купорос применяется в газовом анализе для определения окиси азота, поглощаемой раствором FeSО 4 с образованием окрашенного в тёмно-бурый цвет комплекса (FeNО)SО 4 , а также для получения чернил (с дубильными кислотами), в качестве протравы при крашении, для связывания зловонных газов (H 2 S, NH 3) в отхожих местах и т. д.

Закисные соли железа применяются в фотографии благодаря их способности восстанавливать серебряные соединения на скрытом изображении, запечатлевшемся на фотографической пластинке.

Углекислое железо , FeCO 3 , встречается в природе в виде сидерита или железного шпата; получаемое осаждением водных растворов закисных солей железа карбонатами углекислое железо легко теряет СО 2 и окисляется на воздухе до Fe 2 О 3 .

Бикарбонат железа , H 2 Fe(CО 3) 2 , растворим в воде и встречается в природе в железистых источниках, из которых, окисляясь, выделяется на поверхности земли в виде гидрата окиси железа, Fe(OH) 3 , переходящего в бурый железняк.

Фосфорнокислое железо , Fе 3 (РO 4) 2 ·8Н 2 O, белый осадок; встречается в природе слегка окрашенный, вследствие окисления железа, в голубой цвет, в виде вивианита .

Соли окисного железа . Хлорное железо , FeCl 3 (Fe 2 Cl 6), получается при действии избытка хлора на железо в виде гексагональных красных табличек; хлорное железо на воздухе расплывается; из воды кристаллизуется в виде FeCl 3 ·6Н 2 О (желтые кристаллы); растворы имеют кислую реакцию; при диализе постепенно гидролизуется почти до конца с образованием коллоидного раствора гидрата Fe(OH) 3 . FeCl 3 растворяется в спирте и в смеси спирта с эфиром, при нагревании FeCl 3 ·6H 2 О разлагается на НСl и Fe 2 O 3 ; применяется в качестве протравы и в качестве кровоостанавливающего средства (Liquor ferri sesquichlorati).

Сернокислое окисное железо , Fe 2 (SO 4) 3 , в безводном состоянии имеет желтоватый цвет, в растворе сильно гидролизуется; при нагревании раствора выпадают основные соли; железные квасцы, MFe(SO 4) 2 ·12H 2 O, М - одновалентный щелочной металл; лучше всех кристаллизуются аммонийные квасцы, NH 4 Fe(SО 4) 2 ·12Н 2 О.

Окисел FeО 3 - ангидрид железной кислоты, равно как и гидрат этого окисла H 2 FeО 4 - железная кислота - в свободном состоянии не м. б. получены в виду их крайней непрочности; но в щелочных растворах могут существовать соли железной кислоты, ферраты (например K 2 FeО 4), образующиеся при накаливании железного порошка с селитрой или КСlO 3 . Известна также малорастворимая бариевая соль железной кислоты BaFeО 4 ; т. о., железная кислота в некоторых отношениях весьма напоминает серную и хромовую кислоты. В 1926 г. киевским химиком Горалевичем описаны соединения окисла восьмивалентного железа - наджелезного ангидрида FeО 4 , полученные при сплавлении Fe 2 О 3 с селитрой или бертолетовой солью в виде калиевой соли наджелезной кислоты K 2 FeО 5 ; FeО 4 - газообразное вещество, не образующее с водой наджелезной кислоты H 2 FeО 5 , которая, однако, м. б. выделена в свободном состоянии разложением кислотами соли K 2 FeО 5 . Бариевая соль BaFeO 5 ·7Н 2 О, а также кальциевая и стронциевая соли получены Горалевичем в виде неразлагающихся белых кристаллов, выделяющих лишь при 250-300°С воду и при этом зеленеющих.

Железо дает соединения: с азотом - азотистое железо (нитрид) Fe 2 N при нагревании порошка железа в струе NH 3 , с углеродом - карбид Fe 3 C при насыщении в электрической печи железа углем. Кроме того, изучен целый ряд соединений железа с окисью углерода - карбонилы железа , например, пентакарбонил Fe(CO) 5 - слегка окрашенная жидкость с около 102,9°С (при 749 мм, удельный вес 1,4937), затем оранжевое твердое тело Fe 2 (CO) 9 , нерастворимое в эфире и хлороформе, с удельным весом 2,085.

Большое значение имеют цианистые соединения железа . Кроме простых цианидов Fe(CN) 2 и Fe(CN) 3 , железо образует целый ряд комплексных соединений с цианистыми солями, как, например, соли железистосинеродистой кислоты H 4 Fe(CN) 6 , и соли железосинеродистой кислоты H 3 Fe(CN) 6 , например, красная кровяная соль, которые, в свою очередь вступают в реакции обменного разложения с солями закисного и окисного железа, образуя окрашенные в синий цвет соединения - берлинскую лазурь и турнбуллову синь. При замене в солях железистосинеродистой кислоты H 4 Fe(CN) 6 одной группы CN на одновалентные группы (NO, NО 2 , NH 3 , SО 3 , СО) образуются пруссо-соли, например, нитропруссид натрия (нитрожелезистосинеродистый натрий) Na 2 ·2Н 2 О, получаемый действием дымящей HNО 3 на K 4 Fe(CN) 6 , с последующей нейтрализацией содой, в виде рубиново-красных кристаллов, отделяемых кристаллизацией от образующейся одновременно селитры; соответствующая нитрожелезистосинеродистая кислота H 2 кристаллизуется также в виде тёмно-красных кристаллов. Нитропруссид натрия применяется в качестве чувствительного реактива на сероводород и сернистые металлы, с которыми он дает кроваво-красное, переходящее затем в синее, окрашивание. При действии медного купороса на нитропруссид натрия образуется бледно-зелёный нерастворимый в воде и в спирте осадок, применяемый для испытания эфирных масел.

Аналитически железо обнаруживается действием на его соли, в щелочном растворе, желтой кровяной соли. Соли трехвалентного железа образуют при этом синий осадок берлинской лазури. Соли двухвалентного железа образуют синий осадок турнбулловой сини при действии на них красной кровяной соли. С роданистым аммонием NH 4 CNS соли трехвалентного железа образуют растворимое в воде с кроваво-красным окрашиванием родановое железо Fe(CNS) 3 ; с таннином соли окисного железа образуют чернила. Интенсивной окраской отличаются также и медные соли железистосинеродистой кислоты, которые находят себе применение (увахромовый метод) в цветной фотографии. Из соединений железа, применяемых в медицине, кроме упомянутых галоидных соединений железа, имеют значение: металлическое железо (F. hydrogenio reductum), лимоннокислое железо (F. Citricum - 20% Fe), экстракт яблочнокислого железа (Extractum ferri pomatum), железный альбуминат (Liquor ferri albuminatum), ферратин - белковое соединение с 6% железа; ферратоза - раствор ферратина, карниферрин - соединение железа с нуклеином (30% Fe); ферратоген из нуклеина дрожжей (1% Fe), гематоген - 70%-ный раствор гемоглобина в глицерине, гемол - гемоглобин , восстановленный цинковой пылью.

Физические свойства железа

Имеющиеся в литературе числовые данные, характеризующие различные физические свойства железа, колеблются вследствие трудности получения железа в химически чистом состоянии. Поэтому наиболее достоверными являются данные, полученные для электролитического железа, в котором общее содержание примесей (С, Si, Mn, S, Р) не превышает 0,01-0,03%. Приводимые ниже данные в большинстве случаев и относятся к такому железу. Для него температура плавления равна 1528°С ± 3°С (Руер и Клеспер, 1914 г.), a температура кипения ≈ 2450°С. В твердом состоянии железо существует в четырех различных модификациях - α, β, γ и δ, для которых довольно точно установлены следующие температурные пределы:

Переход железа из одной модификации в другую обнаруживается на кривых охлаждения и нагревания критическими точками, для которых приняты следующие обозначения:

Указанные критические точки представлены на фиг. 1 схематическими кривыми нагревания и охлаждения. Существование модификаций δ-, γ- и α-Fe считается в настоящее время бесспорным, самостоятельное же существование β-Fe оспаривается вследствие недостаточно резкого отличия его свойств от свойств α-Fe. Все модификации железа кристаллизуются в форме куба, причем α, β и δ имеют пространственную решетку центрированного куба, а γ-Fe - куба с центрированными гранями. Наиболее отчетливые кристаллографические характеристики модификаций железа получены на рентгеновских спектрах, как это представлено на фиг. 2 (Вестгрин, 1929 г.). Из приведенных рентгенограмм следует, что для α-, β- и δ-Fe линии рентгеновского спектра одни и те же; они соответствуют решетке центрированного куба с параметрами 2,87, 2,90 и 2,93 Ȧ, а для γ-Fe спектр соответствует решетке куба с центрированными гранями и параметрами 3,63-3,68 А.

Удельный вес железа колеблется в пределах от 7,855 до 7,864 (Кросс и Гилль, 1927 г.). При нагревании удельный вес железа падает вследствие теплового расширения, для которого коэффициенты увеличиваются с температурой, как показывают данные табл. 1 (Дризен, 1914 г.).

Понижение коэффициентов расширения в интервалах 20-800°С, 20-900°С, 700-800°С и 800- 900°С объясняется аномалиями в расширении при переходе через критические точки А С2 и А С3 . Этот переход сопровождается сжатием, особенно резко выраженным в точке А С3 , как показывают кривые сжатия и расширения на фиг. 3. Плавление железа сопровождается расширением его на 4,4% (Гонда и Энда, 1926 г.). Теплоемкость железа довольно значительна по сравнению с другими металлами и выражается для разных температурных интервалов величинами от 0,11 до 0,20 Сal, как показывают данные табл. 2 (Обергоффер и Гроссе, 1927 г.) и построенная на основании их кривая (фиг. 4).

В приведенных данных превращения А 2 , А 3 , А 4 и плавление железа обнаруживаются настолько отчетливо, что для них легко вычисляются тепловые эффекты: А 3 ... + 6,765 Сal, А 4 ... + 2,531 Сal, плавление железа... - 64,38 Сal (по С. Умино, 1926 год, - 69,20 Сal).

Железо характеризуется приблизительно в 6-7 раз меньшей теплопроводностью, чем серебро, и в 2 раза меньшей, чем алюминий; а именно, теплопроводность железа равняется при 0°С - 0,2070, при 100°С - 0,1567, при 200°С - 0,1357 и при 275°С - 0,1120 Cal/см·сек·°С. Наиболее характерными свойствами железа являются магнитные, выражаемые целым рядом магнитных констант, получаемых при полном цикле намагничивания железа. Эти константы для электролитического железа выражаются следующими значениями в гауссах (Гумлих, 1909 и 1918 гг.):

При переходе через точку А с2 ферромагнитные свойства железа почти исчезают и м. б. обнаружены только при очень точных магнитных измерениях. Практически β-, γ- и δ-модификации считаются немагнитными. Электропроводность для железа при 20°С равняется R -1 мо м/мм 2 (где R - электрическое сопротивление железа, равное 0,099 Ω мм 2 /м). Температурный коэффициент электросопротивления а0-100° х10 5 колеблется в пределах от 560 до 660, где

Холодная обработка (прокатка, ковка, протяжка, штамповка) очень заметно отражается на физических свойствах железа. Так, %-ное изменение их при холодной прокатке выражается следующими цифрами (Геренс, 1911 г.): коэрцитивное напряжение +323%, магнитный гистерезис +222%, электросопротивление + 2%, удельный вес - 1%, магнитная проницаемость - 65%. Последнее обстоятельство делает понятными те значительные колебания физических свойств, которые наблюдаются у разных исследователей: к влиянию примесей нередко присоединяется еще и влияние холодной механической обработки.

О механических свойствах чистого железа известно очень мало. Электролитическое железо, сплавленное в пустоте, обнаружило: временное сопротивление на разрыв 25 кг/мм 2 , удлинение - 60%, сжатие поперечного сечения - 85%, твердость по Бринеллю - от 60 до 70.

Структура железа находится в зависимости от содержания в нем примесей (хотя бы и в незначительных количествах) и предварительной обработки материала. Микроструктура железа, как и других чистых металлов, состоит из более или менее крупных зерен (кристаллитов), носящих здесь название феррита

Размеры и резкость их очертаний зависят гл. обр. от скорости охлаждения железа: чем последняя меньше, тем больше развиты зерна и тем резче их контуры. С поверхности зерна бывают окрашены чаще всего неодинаково вследствие неодинаковой кристаллографии, ориентировки их и неодинакового травящего действия реактивов по разным направлениям в кристалле. Нередко зерна бывают вытянуты в одном направлении в результате механической обработки. Если обработка происходила при невысоких температурах, то на поверхности зерен появляются линии сдвигов (линии Неймана), как результат скольжения отдельных частей кристаллитов по плоскостям их спайности. Эти линии являются одним из признаков наклепа и тех изменений в свойствах, о которых было упомянуто выше.

Железо в металлургии

Термин железо в современной металлургии присваивается лишь сварочному железу, т. е. малоуглеродистому продукту, получаемому в тестообразном состоянии при температуре, не достаточной для плавления железа, но высокой настолько, что отдельные частицы его хорошо свариваются друг с другом, давая после проковки однородный мягкий продукт, не принимающий закалки. Железо (в указанном смысле слова) получается: 1) непосредственно из руды в тестообразном состоянии сыродутным процессом; 2) таким же способом, но при более низкой температуре, недостаточной для сваривания частиц железа; 3) переделом чугуна кричным процессом; 4) переделом чугуна пудлингованием.

1) Сыродутный процесс в наст. время применяется лишь малокультурными народами и в таких местностях, куда не может (по отсутствию удобных путей сообщения) проникнуть американское или европейское железо, получаемое современными способами. Процесс ведется в открытых сыродутных горнах и печах. Сырыми материалами для него служат железная руда (обыкновенно бурый железняк) и древесный уголь. Уголь засыпается в горн в той половине его, куда подводится дутье, руда же - кучей, с противоположной стороны. Образующаяся в толстом слое горящего угля окись углерода проходит через всю толщу руды и, имея высокую температуру, восстанавливает железо. Восстановление руды совершается постепенно - с поверхности отдельных кусков к сердцевине. Начинаясь с верхних частей кучи, оно ускоряется по мере продвижения руды в область более высокой температуры; окись железа при этом переходит сначала в магнитную окись, затем в закись, и, наконец, на поверхности кусков руды появляется металлическое железо. В то же время землистые примеси руды (пустая порода) соединяются с еще не восстановленной закисью железа и образуют легкоплавкий железистый шлак, который вытапливается через щели металлической оболочки, образующей как бы скорлупу в каждом куске руды. Будучи нагретыми до белокалильного жара, эти скорлупки свариваются друг с другом, образуя на дне горна губчатую массу железа - крицу, проникнутую шлаком. Для отделения от последнего вынутую из горна крицу разрубают на несколько частей, из которых каждую проковывают, подваривая, после охлаждения в том же горне в полосы или прямо в изделия (вещи домашнего обихода, оружие). В Индии сыродутный процесс ведется и теперь в сыродутных печах, которые отличаются от горнов только несколько большей высотой - около 1,5 м. Стены печей делаются из глиняной массы (не кирпича) и служат лишь одну плавку. Дутье подается в печь через одну фурму мехами, приводимыми в движение ногами или руками. В пустую печь загружается некоторое количество древесного угля («холостая колоша»), а затем попеременно, отдельными слоями, руда и уголь, при чем количество первой постепенно увеличивается до тех пор, пока не дойдет до определенного опытом отношения к углю; вес всей засыпанной руды определяется желаемым весом крицы, который, вообще говоря, незначителен. Процесс восстановления идет так же, как и в горне; железо тоже полностью не восстанавливается, и получающаяся на лещади крица заключает в себе много железистого шлака. Крицу извлекают разломкой печи и разрубают на части, в 2-3 кг весом. Каждую из них нагревают в кузнечном горне и обрабатывают под молотом; в результате получается превосходное мягкое железо, служащее, между прочим, материалом для изготовления индийской стали «вуц» (булат). Состав его следующий (в %):

Ничтожное содержание элементов - примесей железа - или совершенное их отсутствие объясняется чистотой руды, неполнотой восстановления железа и низкой температурой в печи. Расход древесного угля благодаря малым размерам горнов и печей и периодичности их действия очень велик. В Финляндии, Швеции и на Урале железо выплавляли в сыродутной печи Хусгавеля, в которой можно было регулировать ход процесса восстановления и насыщения железа углеродом; расход угля в ней - до 1,1 на единицу железа, выход которого достигал 90% содержания его в руде.

2) В будущем нужно ожидать развития производства железа непосредственно из руды не применением сыродутного процесса, а восстановлением железа при температуре, недостаточной для образования шлака и даже для спекания пустой породы руды (1000°С). Преимущества такого процесса - возможность применения низкосортных видов топлива, устранение флюса и расхода тепла на плавление шлака.

3) Получение сварочного железа переделом чугуна кричным процессом ведется в кричных горнах гл. обр. в Швеции (у нас - на Урале). Для передела выплавляют специальный чугун, т. н. ланкаширский, дающий наименьший угар. В составе его: 0,3-0,45% Si, 0,5-0,6% Mn, 0,02 Р, <0,01% S. Такой чугун в изломе кажется белым или половинчатым. Горючим в кричных горнах может служить только древесный уголь.

Процесс ведется след. обр.: горн, освобожденный от крицы, но с оставшимся на донной доске спелым шлаком конца процесса, наполняется углем, гл. обр. сосновым, на который укладывается подогретый продуктами горения чугун в количестве 165-175 кг (на 3/8 м 2 поперечного сечения горна приходится 100 кг садки чугуна). Поворотом клапана в воздухопроводе дутье направляется через трубы, расположенные в подсводовом пространстве горна, и нагревается здесь до температуры в 150-200°С, ускоряя т. о. плавление чугуна. Плавящийся чугун все время поддерживается (при помощи ломов) на угле выше фурм. При такой работе вся масса чугуна подвергается окислительному действию кислорода воздуха и углекислоты, проходя зону горения в виде капель. Большая поверхность их способствует быстрому окислению железа и его примесей - кремния, марганца и углерода. Смотря по содержанию этих примесей, чугун в большей или меньшей степени теряет их, прежде чем соберется на дне горна. Т. к. в шведском горне переделывается малокремнистый и маломарганцовый чугун, то, проходя горизонт фурм, он теряет весь свой Si и Мn (окислы которых с закисью железа образуют основной шлак) и значительную часть углерода. Плавление чугуна продолжается 20-25 мин. По окончании этого процесса пускают в горн холодное дутье. Осевший на дно горна металл начинает реагировать с находящимися там же спелыми шлаками, содержащими в себе большой избыток (по сравнению с количеством кремнезема) окислов железа - Fe 3 О 4 и FeO, окисляющих углерод с выделением окиси углерода, что приводит в кипение весь металл. Когда металл загустеет (от потери углерода) и «сядет товаром», последний поднимают ломами выше фурм, пускают опять горячее дутье и плавят «товар».

Во время вторичного плавления металл окисляется кислородом как дутья, так и шлаков, которые из него вытапливаются. На дно горна после первого подъема падает металл, достаточно мягкий для того, чтобы из отдельных наиболее спелых частей его собирать крицу. Но прежде, при употреблении кремнистых сортов чугуна, приходилось прибегать ко второму и даже третьему подъему товара, что, конечно, уменьшало производительность горна, увеличивало расход горючего и угар железа. На результаты работы оказывали влияние расстояние фурм от донной доски (глубина горна) и наклон фурм: чем круче поставлена фурма и меньше глубина горна, тем значительнее действие окислительной атмосферы на металл. Более пологий наклон фурм, как и большая глубина горна, уменьшает непосредственное действие кислорода дутья, предоставляя, т. о., большую роль действию шлака на примеси железа; окисление ими идет медленнее, но зато без угара железа. При всяких данных условиях наивыгоднейшее положение фурм относительно донной доски определяется опытом; в современном шведском горне глаз фурмы устанавливается на расстоянии 220 мм от донной доски, а наклон фурм меняется в тесных пределах - от 11 до 12°.

Получающаяся на дне горна крица заключает в себе, в отличие от сыродутной, очень мало механически увлеченного шлака; что же касается химических примесей железа, то Si, Мn и С м. б. полностью удалены (указываемое анализами ничтожное содержание Si и Мn входит в состав механической примеси - шлака), а сера - только отчасти, окисляясь дутьем во время плавления. В это же время окисляется и фосфор, уходя в шлак в виде фосфорножелезной соли, но последняя затем восстанавливается углеродом, и конечный металл может заключать в себе даже относительно больше фосфора (от угара железа), чем исходный чугун. Вот почему для получения первоклассного металла для экспорта в Швеции берут в передел исключительно чистый в отношении Р чугун. Вынутую из горна готовую крицу разрубают на три части (каждая 50-55 кг) и обжимают их под молотом, придавая вид параллелепипеда.

Длительность процесса передела в шведском кричном горне - от 65 до 80 мин.; в сутки получается от 2,5 до 3,5 тонн обжатых кусков «на огонь», при расходе древесного угля всего 0,32-0,40 на единицу готового материала и выходе его от 89 до 93,5% заданного в передел чугуна. В самое последнее время в Швеции были произведены удачные опыты передела жидкого чугуна, взятого от доменных печей, и ускорения процесса кипения перемешиванием металла при помощи механических граблей; при этом угар снизился до 7%, а расход угля - до 0,25.

О химическом составе шведского и южно-уральского железа дают понятие следующие данные (в %):

Из всех родов железа, получаемых промышленными способами, шведское кричное наиболее приближается к химически чистому и вместо последнего применяется в лабораторной практике и исследовательских работах. От сыродутного железа оно отличается своей однородностью, а от самого мягкого мартеновского металла (литого железа) отсутствием марганца; ему свойственна высшая степень свариваемости, тягучести и ковкости. Шведское кричное железо обнаруживает незначительное временное сопротивление на разрыв - всего около 30 кг/мм 2 , при удлинении в 40% и уменьшении поперечного сечения в 75%. В настоящее время годовая производительность кричного железа в Швеции упала до 50000 т, так как после войны 1914-18 гг. область промышленных применений для этого железа сильно сократилась. Наибольшее количество его идет на изготовление (в Англии гл. обр. и в Германии) высших сортов инструментальной и специальной сталей; в самой Швеции из него делают специальную проволоку («цветочную»), подковные гвозди, хорошо кующиеся в холодном состоянии, цепи и полосовую заготовку для сварных труб. Для последних двух целей особенно важны свойства кричного железа: надежная свариваемость, а для труб, сверх того, высшая устойчивость против ржавления.

4) Развитие производства железа кричным процессом влекло за собой истребление лесов; после того как последние в различных странах были взяты под защиту закона, ограничившего их вырубку годовым приростом, Швеция, а затем и Россия - лесистые страны, изобилующие рудами высокого качества, - сделались главными поставщиками железа на международном рынке в течение всего 18 в. В 1784 г. англичанин Корт изобрел пудлингование - процесс передела чугуна на поду пламенной печи, в топке которой сжигался каменный уголь. После смерти Корта Роджерс и Голл ввели существенные улучшения в конструкцию пудлинговой печи, что способствовало быстрому распространению пудлингования во всех промышленных странах и совершенно изменило характер и размеры производства в них железа в течение первой половины 19 века. Этим процессом получили ту массу металла, которая понадобилась для постройки железных судов, железных дорог, локомотивов, паровых котлов и машин.

Топливом для пудлингования служит длиннопламенный каменный уголь, но там, где его нет, приходилось прибегать и к бурому углю, а у нас на Урале - к дровам. Сосновые дрова дают более длинное пламя, чем каменный уголь; оно хорошо греет, но содержание влаги в дровах не должно превосходить 12%. Впоследствии на Урале была применена к пудлингованию регенеративная печь Сименса. Наконец, в США и у нас (в Волжском и Камском бассейнах) пудлинговые печи работали на нефти, распыляемой в рабочее пространство печи непосредственно.

Для быстроты передела и уменьшения расхода топлива желательно иметь холодный пудлинговый чугун; при выплавке его на коксе, однако, в продукте получается много серы (0,2 и даже 0,3%), а при высоком содержании фосфора в руде - и фосфора. Для обыкновенных торговых сортов железа такой чугун с низким содержанием кремния (менее 1 %), под названием передельного, выплавлялся прежде в большом количестве. Древесноугольный чугун, который переделывался на Урале и в центральной России, не содержал серы и давал продукт, шедший и на изготовление кровельного железа. В настоящее время пудлингование служит для производства качественного металла по особым спецификациям, и потому в пудлинговые печи поступает не обыкновенный передельный чугун, а высококачественный, например, марганцовый или «гематит» (малофосфористый), или, наоборот, сильнофосфористый для производства гаечного железа. Ниже указано содержание (в %) главных элементов в некоторых сортах чугуна, применяемых для пудлингования:

Пудлинговая печь по окончании предыдущей операции обыкновенно имеет на поду нормальное количество шлака для работы со следующей садкой. При переработке сильно кремнистого чугуна шлака остается в печи много, и его приходится спускать; наоборот, белый чугун оставляет под печи «сухим», и работу приходится начинать заброской на под нужного количества шлака, который берут из-под молота («спелый», наиболее богатый магнитной окисью). На шлак забрасывается садка чугуна, подогретая в чугуннике (250-300 кг в ординарных и 500-600 кг в двойных печах); затем в топку забрасывают свежую порцию горючего, прочищают колосники, и в печи устанавливается полная тяга. В течение 25-35 мин. чугун плавится, претерпевая б. или м. значительное изменение в своем составе. Твердый чугун окисляется кислородом пламени, причем железо, марганец и кремний дают двойной силикат, стекающий на под печи; плавящийся чугун обнажает все новые и новые слои твердого чугуна, который тоже окисляется и плавится. В конце периода плавления на поду получаются два жидких слоя - чугуна и шлака, на поверхности соприкосновения которых происходит, хотя и в слабой степени, процесс окисления углерода магнитной окисью железа, о чем свидетельствуют выделяющиеся из ванны пузыри окиси углерода. Смотря по содержанию кремния и марганца в чугуне, в расплавленном металле их остается неодинаковое количество: в малокремнистом древесноугольном чугуне или белом - коксовой плавки - кремний в большинстве случаев выгорает при плавлении полностью; иногда же остается некоторое количество его в металле (0,3-0,25%), равно как и марганца. Фосфор тоже окисляется в это время, переходя в фосфорножелезную соль. От уменьшения веса металла при выгорании названных примесей %-ное содержание углерода может даже возрасти, хотя некоторое количество его несомненно сжигается кислородом пламени и шлаков, покрывающих первые порции расплавленного металла.

Для ускорения выгорания оставшихся количеств кремния, марганца и углерода прибегают к пудлингованию, т. е. перемешиванию чугуна со шлаком при помощи клюшки с загнутым под прямым углом концом. Если металл жидок (серый чугун, сильно углеродистый), то перемешивание не достигает цели, и ванну предварительно делают густой забрасыванием в нее холодного спелого шлака или же уменьшением тяги устанавливают в печи неполное горение, сопровождающееся получением сильно коптящего пламени (томление). Через несколько минут, в течение которых производят непрерывно перемешивание, на поверхности ванны появляются обильные пузыри горящей окиси углерода - продукта окисления углерода чугуна кислородом магнитной окиси, растворенной в основном железистом шлаке. По мере хода процесса окисление С усиливается и переходит в бурное «кипение» всей массы металла, которое сопровождается вспучиванием ее и таким значительным увеличением объема, что часть шлака переливается через порог рабочих отверстий. По мере выгорания С повышается температура плавления металла, и для того, чтобы кипение продолжалось, повышают непрерывно температуру в печи. Оконченное при низкой температуре кипение дает сырой товар, т. е. высокоуглеродистую губчатую массу железа, неспособную свариваться; в горячей печи «садится» спелый товар. Процесс окисления примесей железа в пудлинговой печи начинается за счет кислорода шлака, представляющего сплав однокремнеземика железа (Fe 2 SiО 4) с магнитной окисью и закисью железа переменного состава. В английских печах состав смеси окислов выражается формулой 5Fe 3 О 4 ·5 FeО; по окончании кипения отношение окислов в истощенном шлаке выражается формулой Fe 3 О 4 ·5FeО, т. е. в процессе окисления принимает участие 80% всей магнитной окиси шлака. Реакции окисления м. б. представлены следующими термохимическими уравнениями:

Как видно из этих уравнений, окисление Si, Р и Мn сопровождается выделением тепла и, следовательно, нагревает ванну, тогда как окисление С при восстановлении Fe 3 О 4 в FeO поглощает тепло и потому требует высокой температуры. Этим объясняется порядок удаления примесей железа и то, что выгорание углерода заканчивается скорее в горячей печи. Восстановления Fe 3 О 4 до металла не происходит, т. к. для этого требуется более высокая температура, чем та, при которой идет «кипение».

Севший «товар», для того чтобы стать хорошо сваривающимся железом, нуждается еще в пропаривании: товар оставляют на несколько минут в печи и от времени до времени переворачивают ломами, причем нижние его части кладут наверх; под совокупным действием кислорода пламени и шлаков, пропитывающих всю массу железа, углерод в это время продолжает выгорать. Как только получится некоторое количество хорошо сваривающегося металла, из него, избегая лишнего окисления, начинают накатывать крицы. Всего накатывают по мере поспевания товара от 5 до 10 криц (не более 50 кг каждая); крицы выдерживают (пропаривают) у порога в области высшей температуры и подают под молот для обжатия, чем достигается выделение шлака, и придания им формы куска (сечение от 10x10 до 15x15 см), удобной для прокатки в валках. На место выданных криц перемещаются передвижением вперед следующие за ними, до последней. Длительность процесса при производстве металла высшего качества (волокнистое железо) из спелого (высокоуглеродистого) древесноугольного чугуна была на Урале такова: 1) посадка чугуна - 5 мин., 2) плавление - 35 мин., 3) томление - 25 мин., 4) пудлингование (перемешивание) - 20 мин., 5) пропаривание товара - 20 мин., 6) накатка и пропаривание криц - 40 мин., 7) выдача криц (10-11 шт.) - 20 мин.; всего - 165 мин. При работе на белом чугуне, на обычное торговое железо, длительность процесса сокращалась (в 3ападной Европе) до 100 и даже 75 мин.

Что касается результатов работы, то в разных металлургических районах они менялись в зависимости от рода топлива, качества чугуна и сорта производимого железа. Уральские печи, работавшие на дровах, давали выход годного железа на 1 м 3 дров от 0,25 до 0,3 т; расход нефти у нас на единицу железа - 0,3З, каменного угля в европейских печах - от 0,75 до 1,1. Суточная производительность наших больших печей (садка чугуна 600 кг) при работе на сушеных дровах была 4-5 т; выход материала, пригодного для производства кровельного железа, составлял 95-93% количества поступившего в передел чугуна. В Европе суточная производительность обыкновенных печей (садка 250-300 кг) - около 3,5 т при угаре в 9%, а для высококачественного железа - 2,5 т при угаре в 11%.

По химическому составу и физическим свойствам пудлинговое железо является гораздо худшим продуктом, чем кричное, с одной стороны, и литое мартеновское - с другой. Изготовлявшиеся прежде в 3ападной Европе обыкновенные сорта железа содержали много серы и фосфора, т. к. вырабатывались из нечистых коксовых чугунов, а обе эти вредные примеси только частью переходят в шлак; количество шлака в пудлинговом железе - 3-6%, в качественном металле оно не превосходит 2%. Присутствие шлака сильно понижает результаты механических испытаний пудлингового железа. Ниже приведены некоторые данные в %, характеризующие пудлинговое железо - обыкновенное зап.-европейское и хорошее уральское:

Ценным свойством, ради которого и поддерживается теперь производство пудлингового железа, является его прекрасная свариваемость, имеющая иногда особое значение с точки зрения безопасности. Спецификациями ж.-д. обществ предписывается изготовление из пудлингового железа сцепных устройств, тяг для переводных стрелок и болтов. Благодаря лучшему сопротивлению разъедающему действию воды, пудлинговое железо идет также для производства водопроводных труб. Из него же изготовляют гайки (фосфористый крупнозернистый металл) и высококачественное волокнистое железо для заклепок и цепей.

Строение сварочного железа, обнаруживаемое под микроскопом даже при слабом увеличении, характерно присутствием на фотографическом изображении черных и светлых составляющих; первые принадлежат шлаку, а вторые - зернам или волокнам железа, полученным при вытяжке металла.

Железо торговое

Металлургические заводы изготовляют для нужд промышленности железо двух главных видов: 1) листовое и 2) сортовое.

Листовое железо прокатывается в настоящее время до 3 м ширины; при толщине 1-З мм оно называется у нас тонкокатальным; от 3 мм и выше (обычно до 40 мм) - котельным, резервуарным, корабельным, смотря по назначению, которому соответствуют состав и механические свойства материала. Наиболее мягким является котельное железо; оно содержит обыкновенно 0,10-0,12% С, 0,4-0,5% Mn, Р и S - каждого не более 0,05%; временное сопротивление его на разрыв не д. б. больше 41 кг/мм 2 (но и не меньше 34 кг/мм 2), удлинение при разрыве - около 28%. Резервуарное железо выделывается более твердым и прочным; оно содержит 0,12-0,15% С; 0,5-0,7% Мn и не более 0,06% как Р, так и S; сопротивление разрыву 41-49 кг/мм 2 , удлинение 25-28%. Длина листов котельного и резервуарного железа устанавливается заказом сообразно размерам изделия, склепываемого из листов (избегая лишних швов и обрезков), но обыкновенно она не превышает 8 м, так как ограничивается для тонких листов их быстрым охлаждением вовремя процесса прокатки, а для толстых - весом слитка.

Листовое железо менее 1 мм толщины называется черной жестью; оно служит для изготовления белой жести и как кровельный материал. Для последней цели в СССР прокатывают листы размерами 1422x711 мм, весом 4-5 кг, при толщине 0,5-0,625 мм. Кровельное железо выпускается заводами в пачках весом по 82 кг. За границей черная жесть классифицируется в торговле по номерам специального калибра - от 20-го до 30-го (нормальная толщина германской жести от 0,875 до 0,22 мм, а английской - от 1,0 до 0,31 мм). Жесть изготовляется из самого мягкого литого железа, содержащего 0,08- 0,10% С, 0,3-0,35% Мn, если оно изготовляется из чугуна древесноугольной плавки (у нас), и 0,4-0,5% Мn, если исходным материалом служат коксовый чугун; сопротивление разрыву - от 31 до 34 кг/мм 2 , удлинение - 28-30%. Разновидностью листового железа является волнистое (гофрированное) железо. Оно разделяется по характеру волн на железо с низкими и высокими волнами; в первом - отношение ширины волны к глубине колеблется от 3 до 4, во втором 1-2. Волнистое железо делают толщиной 0,75-2,0 мм и шириной листов 0,72-0,81 м (с низкими волнами) и 0,4-0,6 м (с высокими волнами). Волнистое железо употребляется для кровель, стен легких сооружений, жалюзи, а с высокими волнами, кроме того, идет для постройки бесстропильных перекрытий.

Сортовое железо делится по форме поперечного сечения на два класса: обыкновенное сортовое железо и фасонное.

К первому классу относится железо круглое (при диаметре менее 10 мм называемое проволокой), квадратное, плоское или полосовое. Последнее, в свою очередь, делится на: собственно полосовое - шириной от 10 до 200 мм и толщиной более 5 мм; обручное - той же ширины, но толщиной от 5 до 1 мм, указываемой № калибра (от 3-го до 19-го нормального германского и от 6-го до 20-го нового английского калибра); шинное - от 38 до 51 мм шириной и до 22 мм толщиной; универсальное - от 200 до 1000 мм шириной и не менее 6 мм толщиной (прокатывается в особых валках - универсальных). Как шинное, так и обручное железо выпускается заводами скатами, катаная проволока - мотками; остальные сорта - в виде прямых (правленных) полос, обычно не более 8 м длиной (нормально - от 4,5 до 6 м), но по специальному заказу для бетонных конструкций полосы нарезаются до 18 мм длиной, а иногда и более.

Главнейшие виды фасонного железа: угловое (равнобокое и неравнобокое), коробчатое (швеллерное), тавровое, двутавровое (балки), колонное (квадратное) и зетовое железо; существуют также и некоторые другие менее распространенные виды фасонного железа. По нашему нормальному метрическому сортименту размеры фасонного железа указываются № профиля (№ - число см. ширины полки или наибольшей высоты профиля). Угловое неравнобокое и тавровое железо имеют двойной №; напр., № 16/8 означает угловое с полками в 16 и 8 см или тавровое с полкой в 16 см и высотой тавра 8 см. Наиболее тяжелые профили катаемого у нас фасонного железа: № 15 - углового, № 30 - корытного, № 40 - двутаврового.

Состав обыкновенного сваривающегося сортового железа: 0,12% С, 0,4% Мn, менее 0,05% Р и S - каждого; сопротивление его разрыву 34-40 кг/мм 2 ; но круглое железо для заклепок изготовляется из более мягкого материала состава: менее 0,10% С, 0,25- 0,35% Мn, около 0,03% Р и S - каждого. Сопротивление разрыву 32-35 кг/мм 2 , а удлинение 28-32%. Фасонное не свариваемое, а склепываемое железо («строительная сталь») содержит: 0,15 - 0,20% С, 0,5% Мn, до 0,06% Р и S - каждого; его сопротивление разрыву 40-50 кг/мм 2 , удлинение 25-20%. Для производства гаек изготовляется железо (томасовское), содержащее около 0,1% С, но от 0,3 до 0,5% Р (чем крупнее гайки, тем больше Р). За границей для удовлетворения нужд специальных прокатных заводов в торговле обращается полупродукт - квадратная заготовка, обыкновенно 50 х 50 мм в поперечном сечении.