Метеорит - это твердое внеземное вещество, сохранившееся при прохождении через атмосферу и достигшее поверхности Земли. Метеориты - наиболее примитивное в-во СС, не испытавшее дальнейшего фракционирования с момента образования. Это основано на том, что относительная распр. тугоплавких эл. в метеоритах соответствует солнечной распр. Метеориты подразделяются на (по содержанию металл. фазы): Каменные (аэролиты): ахондриты, хондриты, Железокаменные (сидеролиты), Железные (сидериты). Железные метеориты – состоят из камасита - самородного Fe космического происхождения с примесью никеля от 6 до 9%. Железокаменные метеориты Малораспр. группа. Имеют грубозернистые структуры с равными по весу долями силикатной и Fe фаз. (Силикатные минералы - Ol, Px; Fe фаза - камасит с видманштеттеновыми прорастаниями). Каменные метеориты – состоят из силикатов Mg и Fe c примесью металлов. Подразделяются на Хондритовые, ахондритовые и углистые. Хондриты: сфероидальные обособления размером первые мм и менее, сложенные силикатами, реже силикатным стеклом. Погружены в богатую Fe матрицу. Основная масса хондритов представляет собой тонкозернистую смесь Ol, Px-ов (Ol-бронзитовые, Ol-гиперстеновые и Ol-пижонитовые) с никелистым Fe (Ni-4-7%), троилитом (FeS) и плагиоклазом. Хондриты – закристалл. или стекловатые капли, кот. Образ. при плавлении ранее существовавшего силикатного материала, подвергавшегося, нагреванию. Ахондриты: Не содержат хондр, имеют более низкое содер. никелистого Fe и более грубые структуры. Их главные минералы – Px и Pl, некоторые типы обогащены Ol. По составу и структурным особенностям ахондриты похожи на земные Габброиды. Состав и структура говорят о магматическом происхождении. Иногда наблюдаются пузырчатые структуры как у лав. Углистые хондриты (большое кол-во углеродистого вещества) Хар-рная черта углистых хондритов - наличие летучей составляющей , что указывает на примитивность (не произошло удаление летучих эл.) и не претерпели фракционирования. Тип С1 содержит большое кол-во хлорита (водные Mg, Fe алюмосиликаты), а также магнетит , водно-растворимые соли , самородную S , доломит, оливин, графит, орган. соединения. Т.е. с момента их образ-я они сущ. при Т, не > 300 0 С. В составе хондритовых метеоритов недостаток 1/3 хим. Эл. по сравнению с составом углистых хондритов , кот. наиболее близки к составу протопланетного вещества. Наиболее вероятная причина дефицита летучих эл. - последовательная конденсация эл. и их соединений в порядке, обратном их летучести.

5. Исторические и современные модели аккреции и дифференциации протопланетного вещества О.Ю.Шмидт в 40-х годах высказал идею о том, что Земля и планеты ЗГ образовались не из раскаленных сгустков солнечных газов, а путем аккумуляции ТВ. тел и частиц - планетезималей, испытавших плавление позднее во время аккреции (разогрев из-за столкновений крупных планетезималей, диаметром до первых сотен км). Т.е. ранняя дифференциация ядра и мантии и дегазация. Сущ. две точки зрения относит. механизма аккумуляции и представлений о форм-ии слоистой структуры планет. Модели гомогенной и гетерогенной аккреции : ГЕТЕРОГЕННАЯ АККРЕЦИЯ 1. Кратковременная аккреция. Ранние модели гетерогенной аккреции (Турекиан, Виноградов) предполагали, что З. аккумулировалась из материала по мере его конденсации из протопланетного облака. Ранние модели включают раннюю >Т аккумуляцию Fe-Ni сплава, образующего протоядро З., сменяющуюся с пониж. Т аккрецией внешних ее частей из силикатов. Сейчас считают, что в процессе аккреции происходит непрерывное измен. в аккумулирующемся материале отношения Fe/силикат от центра к периферии форм-ейся планеты. При аккумуляции З. разогревается, => плавление Fe, которое отделяется от силикатов и опускается в ядро. После охлаждения планеты добавляется около 20 % ее массы материалом, обогащенным летучими по периферии. В протоземле не существовало резких границ между ядром и мантией, кот. установились в результате гравит. и хим. дифференциации на следующем этапе эволюции планеты. В ранних вариантах дифференциация происходила преимущественно в процессе формирования ЗК, и не захватывала Землю целиком. ГОМОГЕННАЯ АККРЕЦИЯ 2. Принимается большее время аккреции - 10 8 лет. При аккреции Земли и планет ЗГ конденсирующиеся тела имели широкие вариации состава от углистых хондритов, обогащенных летучими до в-ва, обогащенного тугоплавкими компонентами типа Allende. Планеты форм. из этого набора метеоритного в-ва и их различие и сходство определялось относит. пропорциями в-ва различного состава. Так же имела место макроскопическая однородность протопланет. Существование массивного ядра говорит о том, что изначально привнесенный Fe-Ni метеоритами сплав, равномерно распределенный по всей З., выделился в ходе ее эволюции в центральную часть. Однородная по составу планета расслоилась на оболочки в процессе гравитационной дифференциации и химических процессов. Современная модель гетерогенной аккреции , позволяющая объяснить хим. состав мантии разрабатывается группой немецких ученых (Венке, Дрейбус, Ягоутц). Они установили, что содержания в мантии умеренно летучих (Na, K, Rb) и умеренно сидерофильных (Ni, Co) эл., с различ. Коэф-ми распределения Ме/силикат, имеют одинаковую распространенность (нормированную по С1) в мантии, а наиболее сильно сидерофильные элементы имеют избыточные концентрации. Т.е. ядро не находилось в равновесии с мантийным резервуаром. Ими предложена гетерогенная аккреция :1. Аккреция начинается с накопления сильно восстановленного компонента А, лишенного летучих эл. и содержащего все остальные эл. в количествах отвечающих С1, и Fe и все сидерофилы в восстановленном состоянии. С повышением Т одновременно с аккрецией начинается образование ядра. 2. После аккреции в 2/3 массы З. начинает накапливаться все более окисленный материал, компонент В. Часть Ме компонента А еще сохраняется и способствует извлечению наиболее сидерофильных эл. и их переносу в ядро. Источником умеренно летучих, летучих и умеренно сидерофильных эл. в мантии явл. компонент В, что и объясняет их близкую относительную распространенность. Таким образом, Земля на 85% состоит из компонента А и на 15 % из В. В целом состав мантии форм-ся после отделения ядра путем гомогенизации и перемешивания силикатной части компонента А и вещества компонента В.

6. Изотопы химических элементов. Изотопы - атомы одного эл., но имеющих разное число нейтронов N. Они различаются только по массе. Изотоны - атомы разных эл., имеющие разные Z, но одинаковые N. Они располагаются в вертикальных рядах. Изобары - атомы разных эл., у кот. равные масс. числа (А=А), но разные Z и N. Они располагаются в диагональных рядах. Стабильность ядер и распространенность изотопов; радионуклиды Число известных нуклидов ~ 1700, из них стабильны ~ 260. На диаграмме нуклидов стабильные изотопы, (затемненные квадраты), образуют полосу, окруженную нестабильными нуклидами. Стабильны только нуклиды с определенным соотношением Z и N. Отношение N к Z растет от 1 до ~ 3 с увеличением А. 1. Стабильными являются нуклиды, у кот. N и Z примерно равны. До Са в ядрах N=Z. 2. Большая часть стабильных нуклидов имеет четные Z и N. 3. Менее распространены стабильные нуклиды с чет. Z и нечет. N или чет. N и нечет. Z. 4. Р редки стабильные нуклиды с нечет.Z и N.

число стабильных нуклидов

нечетное

нечетное

нечетное

нечетное

нечетное

нечетное

В ядрах с чет. Z и N нуклоны образуют упорядоченную структуру, что определяет их стабильность. Число изотопов меньше у легких эл. и увел. в средней части ПС, достигая максимума у Sn (Z=50) , имеющего 10 стабильных изотопов. У элементов с нечет. Z стабильных изотопов не более 2.

7. Радиоактивность и ее виды Радиоактивность - самопроизвольные превращения ядер неустойчивых атомов (радионуклидов) в стабильные ядра других элементов, сопровождающиеся эмиссией частиц и/или излучением энергии. Св-во рад-ти не зависит от хим. Св-в атомов, а опред-ся строением их ядер. Радиоактивный распад сопровождается измен. Z и N родительского атома и приводит к превращению атома одного эл. в атом другого эл. Так же, Резерфордом и другими учеными было показано, что рад. распад сопровождается эмиссией излучения трех различных типов, a, b, g. a -лучи - потоки высокоскоростных частиц - ядер Не, b - лучи - потоки e – , g - лучи - электромагнитные волны с большой энергией и с более короткой λ. Виды радиоактивности a-распад - распад путем эмиссии a-частиц, он возможен для нуклидов с Z> 58 (Се), и для группы нуклидов с небольшим Z , включая 5He, 5Li, 6Be. a-частица состоит из 2 Р и 2N, происходит смещение на 2 позиции по Z. Первоначальный изотоп наз-ся родительским или материнским, а новообразованный - дочерним .

b-распад - имеет три вида: обычный b -распад, позитронный b -распад и e – захват. Обычный b-распад - можно рассматривать как превращение нейтрона в протон и e – , последний или бета-частица - выбрасывается из ядра, сопровождается эмиссией энергии в форме g-излучения. Дочерний нуклид является изобаром родительского, но его заряд больше.

Бывает серия распадов пока не образуется стаб-ый нуклид. Пример: 19 K40 -> 20 Ca40 b - v- Q. Позитронный b-распад - эмиссия из ядра положительной частицы позитрона b , его образование - превращение ядерного протона в нейтрон, позитрон и нейтрино. Дочерний нуклид является изобаром, но имеет меньший заряд.

Пример, 9 F18 -> 8 O18 b v Q Атомы, с избытком N и располагающиеся справа от зоны ядерной стабильности, являются b - -радиоактивными, т.к. при этом число N уменьшается. Атомы слева от области ядерной стабильности нейтроннодефицитны, они испытывают позитронный распад и число их N увеличивается. Таким образом, при b - и b -распаде наблюдается тенденция изменения Z и N , приводящая к приближению дочерних нуклидов к зоне ядерной стабильности. e захват - захват одного из орбитальных электронов. Высока вероятность захвата из К-оболочки, кот. ближе всего к ядру. e – захват вызывает эмиссию из ядра нейтрино. Дочерний нуклид явл. изобаром, и занимает тоже положение относительно родительского, что и при позитронном распаде. b - -излучение отсутствует, а при заполнении вакансии в К-оболочке выделяются Х-лучи. При g-излучении не изменяются ни Z, ни A; при возвращении ядра в обычное состояние энергия выделяется в форме g-излучения. Некоторые дочерние нуклиды природных изотопов U и Th могут распадаться либо испуская b-частицы, либо путем a-распада. Если вначале происходил b-распад, то затем a-распад, и наоборот. Другими словами, два этих альтернативных вида распада образуют замкнутые циклы и всегда приводят к одному и тому же конечному продукту - стабильным изотопам Pb.

8. Геохимические следствия радиоактивности земного вещества. Лорд Кельвин (Уильям Томсон) с 1862 по 1899 г. выполнил ряд расчетов, кот. налагали ограничения на возможный возраст Земли. Они основывались на рассмотрении светимости Солнца, влиянии лунных приливов и процессах охлаждения З. Он пришел к выводу, что возраст Земли составляет 20-40 млн. лет. Позже Резерфорд выполнил определение возраста U мин. и получил значения около 500 млн. лет. Позже Артуром Холмсом в его книге “Возраст Земли” (1913 г) показал важность изучения радиоактивности в геохронологии и привел первую ГХШ. Она была основана на рассмотрении данных о мощности отложений осадочных гп и о содержании продуктов радиогенного распада - He и Pb в U-содержащих минералов. Геохронологическая шкала - шкала естественноисторического развития ЗК, выраженная в числовых единицах времени. Возраст аккреции З. составляет около 4,55 млрд. лет. Период до 4 или 3,8 млрд. лет - время дифференциации планетных недр и образования первичной коры, его называют катархеем. Наиболее длительный период жизни З. и ЗК - это докембрий, кот. простирается от 4 млрд. лет до 570 млн. лет, т.е. около 3,5 млрд. лет. Возраст древнейших известных сейчас пород превышает 4 млрд. лет.

9. Геохимическая классификация элементов В.М. Гольшмидта В основу положены : 1- распределение эл. между различными фазами метеоритов - разделение в ходе первичной ГХкой дифференциации З. 2- специфическое химическое сродство с теми или иными элементами (O, S, Fe), 3- строение электронных оболочек. Ведущие эл., слагающие метеориты, – O, Fe, Mg, Si, S. Метеориты состоят из трех главных фаз: 1) металл., 2) сульфидной, 3) силикатной. Все эл. распределяются между этими тремя фазами в соответствии с их относительным сродством к O, Fe и S. В классификации Гольдшмидта выделяются следующие группы эл.: 1) Сидерофильные (любящие железо) – металл. фаза метеоритов: эл., образующие с Fe сплавы произвольного состава - Fe, Co, Ni, все платиноиды (Ru, Rh, Pd, Pt, Re, Os, Ir), и Mo. Часто имеют самородное состояние. Это переходные элементы группы VIII и некоторые их соседи. Формируют внутреннее ядро З. 2) Халькофильные (любящие медь)- сульфидная фаза метеоритов: эл., образующие природные соед-я с S и ее аналогами Se и Te, имеют также сродство с As(мышьяк), иногда их называют (сульфурофильные). Легко переходят в самородное состояние. Это элементы побочных подгрупп I-II и главных подгрупп III- VI групп ПС с 4 по 6 период S. Наиболее известны – Сu, Zn, Pb, Hg, Sn, Bi, Au, Ag. Сидерофильные эл. – Ni, Co, Mo также могут быть халькофильными при большом кол-ве S. Fe в восстановительных условиях имеет сродство к S (FeS2). В современной модели З. эти металлы образуют внешнее, обогащенное серой, ядро З.

3) Литофильные (любящие камень) – силикатная фаза метеоритов: эл., имеющие сродство к O 2 (оксифильные). Образуют кислородные соединения - окислы, гидроокислы, соли кислородных кислот-силикаты. В соединениях с кислородом имеют 8-электронную внеш. оболочку. Это самая многочисленная группа из 54 элементов (С, распространенные петрогенные - Si, Al, Mg, Ca, Na, K, элементы семейства железа – Ti, V, Cr, Mn, редкие - Li, Be, B, Rb, Cs, Sr, Ba, Zr, Nb, Ta, REE, т.е. все остальные кроме атмофильных). В окислительных условиях железо оксифильно - Fe2O3. формируют мантию З. 4) Атмофильные (хар-но газообразное состояние) – матрикс хондритов: H, N инертные газы (He, Ne, Ar, Kr, Xe, Rn) . Формируют атмосферу З. Так же есть такие группы: редкоземельные Y, щелочные, крупноионные литофильные элементы LILE (K, Rb, Cs, Ba, Sr), высокозарядные элементы или элементы с высокой силой поля HFSE (Ti, Zr, Hf, Nb, Ta, Th). Некоторые определения эл.: петрогенные (породообразующие, главные) второстепенные, редкие, микроэлементы - с конц. не более 0,01%. рассеянные – микроэл. не образующие собственных минералов акцессорные - образуют акцессорные мин. рудные - образуют рудные мин.

10. Основные св-ва атомов и ионов, определяющие их поведение в природных системах . Орбитальные радиусы - радиусы максимумов радиальной плотности e – внеш. орбитали. Они отражают размеры атомов или ионов в свободном состоянии, т.е. вне хим. связи. Главным фактором, является e – структура эл., и чем больше e – оболочек тем больше размер. Для опред. размеров атомов или ионов важным способом явл. Опред. расстояния от центра одного атома до центра другого, кот. называется длиной связи. Для этого используют рентгеновские методы. В первом приближении атомы рассматриваются в виде сфер, и применяется “принцип аддитивности”, т.е. полагают, что межатомное расстояние складывается из суммы радиусов атомов или ионов, слагающих в-во. Тогда зная или принимая некоторую величину в качестве радиуса одного эл. можно рассчитать размеры всех других. Рассчитанный таким образом радиус называется эффективным радиусом . Координационное число - число атомов или ионов, расположенных в непосредственной близости вокруг рассматриваемого атома или иона. КЧ определяется отношением R k /R a: Валентность - количество e – , отданных или присоединенных атомом при образовании хим. связи. Потенциал ионизации - это энергия, необходимая для удаления e – из атома. Она зависит от строения атома и опред-ся экспериментально. Потенциал ионизации соответствует напряжению катодных лучей, которое достаточно для ионизации атома этого эл. Может быть несколько потенциалов ионизации, для нескольких e – удаляемых с внеш. e – оболочки. Отрыв каждого последующего e – требует большей энергии и не всегда может быть. Обычно используют потенциал ионизации 1го e – , кот. обнаруживает периодичность. На кривой потенциалов ионизации щелочные металлы, легко теряющие e – , занимают минимумы на кривой, инертные газы – вершины. С ростом атомного номера потенциалы ионизации увеличиваются в периоде и уменьшаются в группе. Обратной величиной является сродство кe – . Электроотрицательность - способность при вступлении в соединения притягивать e – . Наиболее электроотрицательны галогены, наименее - щелочные металлы. Электроотрицательность зависит от заряда ядра атома, валентности его в данном соединении и строения e – оболочек. Неоднократно делались попытки выразить ЭО в единицах энергии или в условных единицах. Величины ЭО закономерно изменяются по группам и периодам ПС. ЭО минимальны для щелочных металлов и возрастают к галогенам. У литофильных катионов ЭО уменьш. от Li к Cs и от Mg к Ba, т.е. с увел. ионного радиуса. У халькофильных эл. ЭО выше чем у литофильных из той же группы ПС. У анионов группы О и F ЭО уменьшается вниз по группе и следовательно она максимальна у этих эл. Эл. с резко различными значениями ЭО образуют соединения с ионным типом связи, а с близкими и высокими - с ковалентным, с близкими и низкими – металлическим типом связи. Ионный потенциал Картледжа (I)равен отношению валентности к R i , он отражает св-ва катионогенности или ионогенности. В.М.Гольшмидт показал, что св-ва катионогенности и анионогенности зависят от соотношения валентности (W) и R i для ионов типа благородных газов. Это отношение в 1928 г. К.Картледж назвал ионным потенциалом I. При малых значениях I эл. ведет себя как типичный металл и катион (щелочные и щелочноземельные металлы), а при больших - как типичный неметалл и анион (галогены). Эти соотношения удобно изображать графически. Диаграмма: ионный радиус - валентность. Величина ионного потенциала позволяет судить о подвижности эл. в водной среде. Эл. с низкими и высокими значениями I являются наиболее подвижными легко (c низкими - переходят в ионные растворы и мигрируют, с высокими – образуют комплексные растворимые ионы и мигрируют), а с промежуточными – инертные. Основные типы хим. связи, хар-р связи в основных группах минералов.Ионная – образ-ся вследствие притяжения ионов с противоположными зарядами. (с большой разницей в электроотрицательности) Ионная связь преобладает у большинства мин. ЗК - окислов и силикатов, это наиболее распространенный тип связи также в гидро- и атмосферах. Связь обеспечивает легкую диссоциацию ионов в расплавах, растворах, газах, благодаря чему происходит широкая миграция хим. Эл., их рассеяние и конц-ие в земных геосферах. Ковалентная – сущ. благодаря взаимодействию e – , используемых разными атомами. Типична для эл. с равной степенью притяжения e – , т.е. ЭО. Хар-на для жидких и газообразных в-в (H2O, Н2, O2, N2) и менее для кристалл. Ковалентной связью хар-тся сульфиды, родственные им соединения As, Sb, Te, а также моноэл. соединения неметаллов – графит, алмаз. Ковалентные соединения характеризуются слабой растворимостью. Металлическая - особый случай ковалентной связи, когда каждый атом разделяет свои e – со всеми соседними атомами. e – способны к свободным передвижениям. Типична для самородных металлов (Си, Fe, Ag, Au, Pt). Многие мин. обладают связью, кот. относится частично к ионной, частично к ковалентной. В сульфидных мин. максимально проявлена ковалентная связь, она имеет место между атомами металла и S а металлическая - между атомами металла (металл. блеск сульфидов). Поляризация - это эффект искажения e – облака аниона маленьким катионом с большой валентностью так, что маленький катион, притягивая к себе крупный анион, и уменьшает его эффективный R, сам входя в его e – облако. Таким образом, катион и анион не представляют собой правильные сферы, а катион вызывает деформацию аниона. Чем выше заряд катиона и меньше его размер тем сильнее действие поляризации. И чем больше размер аниона и его отрицательный заряд тем сильнее он поляризуется - деформируется. Литофильные катионы (с 8 эл. оболочками) вызывают меньшую поляризацию, чем ионы с достраивающимися оболочками (типа Fe). Халькофильные ионы с большими порядковыми номерами и высоковалентные вызывают наиболее сильную поляризацию. С этим связано образование комплексных соединений: 2- , , 2- , 2- , кот. растворимы и явл. главными переносчиками металлов в гидротермальных растворах.

11.Состояние(форма нахождения) эл. в природе. В ГХ выделяют: собственно мин. (кристалл. фазы), примеси в мин., различные формы рассеянного состояния; форма нахождения эл. в природе несет сведения о степени ионизации, хар-ре хим. связей эл. в фазах и т.п. В-во (эл.) находится в трех главных формах. Первая - конц-е атомы, образ. звезды различ. типов, газовые туманности, планеты, кометы, метеориты и косм. тв. частицы в-ва. Степень конц. В-ва во всех телах отличается. Наиболее рассеянные состояния атомов в газовых туманностях удерживаются гравитационными силами или находятся на грани их преодоления. Вторая - рассеянные атомы и молекулы, образ-е межзвездный и межгалактический газ, состоящий из свободных атомов, ионов, молекул, e – . Кол-во его в нашей Галактике значительно меньше, чем в-ва, которое сосредоточено в звездах и газовых туманностях. Межзвездный газ находится на различ. стадиях разреженности. Третья - интенсивно мигрирующие, летящие с громадной скоростью атомные ядра и элементарные частицы, составляющие космические лучи. В.И. Вернадский выделил главные четыре формы нахождения хим. Эл. в ЗК и на ее поверхности: 1.горные породы и минералы (твердые кристаллические фазы), 2.магмы, 3.рассеянное состояние, 4.живое в-во. Каждая из этих форм отличается особым состоянием их атомов. Сущ. и другое выделение форм нахождения эл. в природе, зависящие от конкретных св-в самих эл. А.И. Перельман выделил подвижные и инертные формы нахождения хим. Эл. в литосфере. По его определению, подвижная форма представляет собой такое состояние хим. Эл. в гп, почвах и рудах, находясь в кот. Эл. легко может переходить в р-р и мигрировать. Инертная форма представляет такое состояние в г.п., рудах, коре выветривания и почвах, в кот. Эл. в условиях данной обстановки обладает низкой миграционной способ-ю и не может переходить в р-р и мигрировать.

12.Внутренние факторы миграции .

Миграция - перемещение хим. Эл. в геосферах З, ведущее к их рассеянию или конц. Кларковые – средние конц. в главных типах гп ЗК каждого хим. Эл. можно рассматривать как состояние его равновесия в условиях данной хим. среды, отклонение от кот. постепенно сокращается путем миграции этого эл. В земных условиях миграция хим. Эл. происходит в любых средах – ТВ. и газообразной (диффузия), но легче в жидкой среде (в расплавах и водных р-рах). При этом формы миграции хим. Эл. также различны – они могут мигрировать в атомарной (газы, расплавы), ионной (растворы, расплавы), молекулярной (газы, р-ры, расплавы), коллоидной (р-ры) формах и, в виде обломочных частиц (воздушная и водная среда). А.И.Перельманом выделяется четыре вида миграции хим. Эл.: 1.механическая,2.физ.-хим., 3.биогенная, 4.техногенная. Важнейшие внутренние факторы : 1.Термические св-ва эл., т.е. их летучесть или тугоплавкость. Эл., имеющие T конденсации более 1400 o K названы тугоплавкими платиноиды, литофильные - Ca, Al, Ti, Ree, Zr, Ba, Sr, U, Th), от 1400 до 670 o K – умеренно летучими. [литофильные – Mg, Si (умеренно тугоплавкие), многие халькофильные, сидерофильный –Fe, Ni, Co ], < 670 o K – летучими (атмофильные). На основании этих св-в произошло разделение эл. по геосферам З. При магм. процессе в условиях высоких Т способность к миграции будет зависеть от возможности образования тугооплавких соединений и, нахождения в твердой фазе. 2. Хим. Св-ва эл. и их соединений. Атомы и ионы, обладающие слишком большими или слишком малыми R или q, обладают и повышенной способностью к миграции и перераспределению. Хим. Св-ва эл. и их соединений приобретают все большее значение по мере снижения T при миграции в водной среде. Для литофильных эл. с низким ионным потенциалом (Na, Ca, Mg) в р-рах хар-ны ионные соединения, обладающие высокой раствор-ю и высокими миграционными способностями. Эл. с высокими ионными потенциалами образуют растворимые комплексные анионы (С, S, N, B). При низких Т высокие миграционные способности газов обеспечиваются слабыми молекулярными связями их молекул. Рад. Св-ва, опред-ие изменение изотопного состава и появление ядер других эл.

Железные метеориты представляют собой самую большую группу находок метеоритов за пределами жарких пустынь Африки и льдов Антарктиды, поскольку неспециалисты легко могут их опознать по металлическому составу и большому весу. Кроме того, они выветриваются медленнее каменных метеоритов и, как правило, имеют значительно большие размеры в силу высокой плотности и прочности, препятствующих их разрушению при прохождении через атмосферу и падении на землю.Несмотря на этот факт, а также то, что на железные метеориты общей массой более 300 тонн приходится более 80% общей массы всех известных метеоритов, они сравнительно редки. Железные метеориты часто находят и опознают, однако на их долю приходится лишь 5,7% всех наблюдавшихся падений.С точки зрения классификации железные метеориты делятся на группы по двум совершенно разным принципам. Первый принцип - своего рода реликт классической метеоритики и подразумевает разделение железных метеоритов по структуре и доминирующему минеральному составу, а второй представляет собой современную попытку разделения метеоритов на химические классы и соотнесения их с определенными родительскими телами.Структурная классификация Железные метеориты в основном состоят из двух железо-никелевых минералов - камазита с содержанием никеля до 7,5% и тэнита с содержанием никеля от 27% до 65%. Железные метеориты имеют специфическую структуру, зависящую от содержания и распределения того или другого минерала, на основании которой классическая метеоритика делит их на три структурных класса.Октаэдриты Гексаэдриты Атакситы Октаэдриты
Октаэдриты состоят из двух фаз металла – камасита (93,1% железа, 6,7% никеля, 0,2 кобальта) и тэнита (75,3% железа, 24,4% никеля, 0,3 кобальта) которые образуют объёмную восьмигранную структуры. Если такой метеорит отполировать и обработать его поверхность азотной кислотой, на поверхности проявляется так называемая видманштеттовая структура, восхитительная игра геометрических фигур. Эти группы метеоритов различаются в зависимости от ширины полос камазита: крупно структурные бедные никелем широкополосные октаэдриты с шириной полосы более 1,3 мм, средние октаэдриты с шириной полосы от 0,5 до 1,3 мм, а также мелкозернистые богатые никелем октаэдриты с шириной полосы менее 0,5 мм.Гексаэдриты Гексаэдриты почти полностью состоят из бедного никелем камазита и при полировке и травлении не обнаруживают видманштеттовой структуры. Во многих гексаэдритах после травления проявляются тонкие параллельные линии, так называемые неймановые линии, отражающие структуру камазита и, возможно, являющиеся следствием ударного воздействия, столкновения родительского тела гексаэдритов с другим метеоритом.Атакситы После травления атакситы не обнаруживают никакой структуры, но, в отличие от гексаэдритов, они почти полностью состоят из тэнита и содержат лишь микроскопические ламеллы камазита. Они относятся к самым богатым никелем (содержание которого превышает 16%), но и самым редким метеоритам. Однако мир метеоритов - это удивительный мир: как ни парадоксально, самый большой метеорит на Земле, метеорит Гоба из Намибии, весом более 60 тонн, относится к редкому классу атакситов.
Химическая классификация
Помимо содержания железа и никеля, метеориты различаются по содержанию других минералов, а также по наличию следов редкоземельных металлов, таких как германий, галлий, иридий. Исследования соотношения содержания металлических микроэлементов и никеля показали наличие определенных химических групп железных метеоритов, причем считается, что каждая из них соответствует конкретному родительскому телу.Здесь мы кратко коснемся тринадцати установленных химических групп, причем следует отметить, что в них не попадают около 15% известных железных метеоритов, которые по химическому составу уникальны. По сравнению с железо-никелевым ядром Земли большинство железных метеоритов представляют ядра дифференцированных астероидов или планетоидов, которые должны были разрушиться вследствие катастрофического ударного воздействия, прежде чем упасть на Землю в виде метеоритов!Химические группы: IAB IC IIAB IIC IID IIE IIF IIIAB IIICD IIIE IIIF IVA IVB UNGR Группа IAB Значительная часть железных метеоритов принадлежит к этой группе, в которой представлены все структурные классы. Особенно часто среди метеоритов этой группы встречаются крупные и средние октаэдриты, а также богатые силикатами железные метеориты, т.е. содержащие более или менее крупные включения различных силикатов, химически близкородственных уинонаитам, редкой группе примитивных ахондритов. Поэтому считается, что обе группы происходят от одного и того же родительского тела. Нередко метеориты группы IAB содержат включения железосульфидного троилита бронзового цвета и черные графитовые зерна. Не только наличие этих рудиментарных форм углерода указывает на близкое родство группы IAB с каменноугольными хондритами; такой вывод позволяет сделать и распределение микроэлементов.Группа IC Значительно более редкие железные метеориты группы IC имеют большое сходство с группой IAB с той разницей, что они содержат меньше редкоземельных микроэлементов. Структурно они относятся к крупнозернистым октаэдритам, хотя известны и железные метеориты группы IC, имеющие другую структуру. Типичным для этой группы является частое наличие темных включений цементитного когенита при отсутствии силикатных включений.Группа IIAB Метеориты этой группы являются гексаэдритами, т.е. состоят из очень крупных отдельных кристаллов камазита. Распределение микроэлементов в железных метеоритах группы IIAB напоминает их распределение в некоторых каменноугольных хондритах и энстатитных хондритах, из чего можно заключить, что железные метеориты группы IIAB происходят от одного родительского тела.Группа IIC К железным метеоритам группы IIC относятся самые мелкозернистые октаэдриты с полосами камазита шириной менее 0,2 мм. Так называемый “заполняющий” плессит, продукт особенно тонкого синтеза тэнита и камазита, встречающийся также в других октаэдритах в переходной форме между тэнитом и камазитом, является основой минерального состава железных метеоритов группы IIC.Группа IID Метеориты этой группы занимают среднее положение на переходе к мелкозернистым октаэдритам, отличаясь сходным распределением микроэлементов и очень высоким содержанием галлия и германия. Большинство метеоритов группы IID содержат многочисленные включения железо-никелевого фосфата - шрайберзита, чрезвычайно твердого минерала, который часто затрудняет резку железных метеоритов группы IID.Группа IIE Структурно железные метеориты группы IIE относятся к классу среднезернистых октаэдритов и часто содержат многочисленные включения различных богатых железом силикатов. При этом, в отличие от метеоритов группы IAB, силикатные включения имеют форму не дифференцированных обломков, а затвердевших, часто четко выраженных капель, которые придают железным метеоритам группы IIE оптическую привлекательность. Химически метеориты группы IIE близкородственны Н-хондритам; возможно, обе группы метеоритов происходят от одного и того же родительского тела.Группа IIF В эту небольшую группу входят плесситовые октаэдриты и атакситы, имеющие высокое содержание никеля, а также очень высокое содержание таких микроэлементов, как германий и галлий. Существует определенное химическое сходство как с палласитами группы “Игл”, так и с каменноугольными хондритами групп СО и CV. Возможно, палласиты группы “Игл” происходят от того же родительского тела.Группа IIIAB После группы IAB самой многочисленной группой железных метеоритов является группы IIIAB. Структурно они относятся к крупно и среднезернистым октаэдритам. Иногда в этих метеоритах находят включения троилита и графита, в то время как силикатные включения крайне редки. Тем не менее существует сходство с палласитами основной группы, и сегодня считается, что обе группы происходят от одного родительского тела.
Группа IIICD Структурно метеориты группы IIICD являются самыми мелкозернистыми октаэдритами и атакситами, а по химическому составу они близкородственны метеоритам группы IAB. Как и последние, железные метеориты группы IIICD часто содержат силикатные включения, и сегодня считается, что обе группы происходят от одного родительского тела. Вследствие этого они также имеют сходство с уинонаитами, редкой группой примитивных ахондритов. Для железных метеоритов группы IIICD типичным является наличие редкого минерала гексонита (Fe,Ni) 23 C 6 , который присутствует исключительно в метеоритах.Группа IIIE Структурно и химически железные метеориты группы IIIE имеют большое сходство с метеоритами группы IIIAB, отличаясь от них уникальным распределением микроэлементов и типичными включениями гексонита, что роднит их с метеоритами группы IIICD. Поэтому не совсем ясно, образуют ли они самостоятельную группу, происходящую от отдельного родительского тела. Возможно, ответ на этот вопрос дадут дальнейшие исследования.Группа IIIF Структурно эта маленькая группа включает октаэдриты, от крупнозернистых до мелкозернистых, но отличается от других железных метеоритов как сравнительно небольшим содержанием никеля, так и очень низким содержанием и уникальным распределением некоторых микроэлементов.Группа IVA Структурно метеориты группы IVA относятся к классу мелкозернистых октаэдритов и отличаются уникальным распределением микроэлементов. Они имеют включения троилита и графита, в то время как силикатные включения крайне редки. Примечательным исключением является только аномальный метеорит Штейнбах, историческая немецкая находка, поскольку он почти наполовину состоит из красно-бурого пироксена в железо-никелевой матрице типа IVA. В настоящее время бурно обсуждается вопрос о том, является ли он продуктом ударного воздействия на IVA-родительское тело или родственником палласитов и, следовательно, железокаменным метеоритом.Группа IVB
Все железные метеориты группы IVB имеют высокое содержание никеля (около 17%) и структурно относятся к классу атакситов. Однако при наблюдении под микроскопом можно заметить, что они состоят не из чистого тэнита, а скорее имеют плесситовую природу, т.е. образовались за счет тонкого синтеза камасита и тэнита. Типичным примером метеоритов группы IVB является Гоба из Намибии, самый большой метеорит на Земле.Группа UNGR Этим сокращением, означающим “не входящие в группу”, обозначаются все метеориты, которые нельзя отнести к вышеупомянутым химическим группам. Несмотря на то, что в настоящее время исследователи делят эти метеориты на двадцать различных маленьких групп, для признания новой метеоритной группы, как правило, необходимо, чтобы в нее входили как минимум пять метеоритов, как установлено требованиями Международного номенклатурного комитета Метеоритного общества. Наличие этого требования препятствует поспешному признанию новых групп, которые в дальнейшем оказываются лишь ответвлением другой группы.

Обновлено 24.10.2018

В зависимости от доминирующего состава вещества метеорита различают три основных типа метеоритов (type of meteorites – англ.):

каменные метеориты – в составе метеорита преобладает минеральный материал

железные метеориты - в составе метеорита доминирует металлическая составляющая

железно-каменные метеориты – метеорит состоит из смешанного материала

Это традиционная, классическая классификация метеоритов, достаточно простая и удобная. Однако современная научная классификация метеоритов основывается на разделении по группам, в которых у метеоритов имеются общие физические, химические, изотопные и минералогические свойства...

Каменные метеориты

Каменные метеориты (stony meteorites – англ.) на первый взгляд напоминают земные камни. Это наиболее распространенный тип метеоритов (около 93% от всех падений). Существуют две группы каменных метеоритов: хондриты (подавляющее большинство 86%) и ахондриты .

оливины (Fe, Mg)2 - (фаялит Fe2 и форстерит Mg2)

пироксены (Fe, Mg)2Si2O6 - (ферросилит Fe2Si2O6 и энстатит Mg2Si2O6)

В ахондритах хондры отсутствуют. Установлено, что ахондриты являются обломками планет и астероидов, например метеориты с Марса и Луны являются ахондритами. Структура и состав этих каменных метеоритов близкие к земным базальтам. Ахондриты являются достаточно распространенным типом метеоритов (около 8% от всех найденных метеоритов).

Каменные метеориты содержат включения никелистого железа (как правило, не более 20% массы), а также другой . По оценкам специалистов возраст каменных метеоритов около 4,5 миллиарда лет.

Железные метеориты

Железные метеориты (iron meteorites – англ.) состоят в основном из металла, смеси (сплава) железа и никеля в различных пропорциях, а также в них имеются включения других элементов и минералов, однако на них редко приходится больше 20% массы (около 6% падений). Содержание Ni в железных метеоритах колеблется от 5 до 30% и более.

На этот тип метеоритов наиболее четко реагирует даже обычный . Излом метеорита имеет характерный металлический блеск. Кора плавления имеет серый или коричневый цвет, поэтому визуально сложно.

Железно-каменные метеориты

Железно-каменные метеориты (iron-stony meteorites – англ.)достаточно редкий тип метеоритов (около 1,5 % падений). Состав этих метеоритов имеет промежуточное положение между каменными и железными метеоритами. Существуют две группы железно - каменных метеоритов: палласиты и мезосидериты .

Структура палласита это полупрозрачные кристаллы оливина (Fe, Mg)2, заключенные в матрице из железа и никеля. Палласиты на изломе (в разрезе) имеют привлекательный эстетичный внешний вид и являются желанным приобретением для коллекционеров. находится в диапазоне $6 - $60 и более за грамм метеоритного вещества.

Мезосидериты это очень редкий тип метеоритов (около 0,5% падений). В состав мезосидеритов входят в примерно равных пропорциях железо, никель и силикатные минералы, такие как пироксены, оливин, полевой шпат.

Наиболее ценными, как с точки зрения науки, так и с точки зрения бизнеса на метеоритах и коллекционирования являются в первую очередь , а также все "семейство" железно-каменных метеоритов.

Related tags : виды метеоритов, типы метеоритов, классификация метеоритов, каменные метеориты, железо - каменные метеориты, железные метеориты, хондриты, ахондриты, палласиты, мезосидериты, какие бывают метеориты, химический состав метеоритов, метеорит в разрезе, метеорит на изломе

Метеоритом называют упавшее на поверхность планеты твердое тело естественного космического происхождения размером от 2 мм. Тела, достигшие поверхности планеты и имеющие размеры от 10 мкм до 2 мм, принято именовать микрометеоритами; более мелкие частицы - это космическая пыль. Метеориты характеризуются разным составом и структурой. Эти особенности отражают условия их происхождения и позволяют ученым более уверенно судить об эволюции тел Солнечной системы.

Типы метеоритов по химическому составу и структуре

Метеоритное вещество в основном сложено минеральными и металлическими компонентами в различных пропорциях. Минеральная часть - это железо-магниевые силикаты, металлическая представлена никелистым железом. Часть метеоритов содержит примеси, определяющие некоторые важные особенности и несущие информацию о происхождении метеорита.

Как делятся метеориты по химическому составу? Традиционно выделяют три большие группы:

  • Каменные метеориты - силикатные тела. Среди них выделяют хондриты и ахондриты, имеющие важные структурные различия. Так, хондритам свойственно наличие включений - хондр - в минеральной матрице.
  • Железные метеориты, состоящие преимущественно из никелистого железа.
  • Железокаменные - тела промежуточного строения.

Помимо классификации, учитывающей химический состав метеоритов, существует также принцип подразделения «небесных камней» на две обширные группы по структурным признакам:

  • дифференцированные, к которым относятся только хондриты;
  • недифференцированные - обширная группа, включающая все остальные типы метеоритов.

Хондриты - остатки протопланетного диска

Отличительная черта этого типа метеоритов - хондры. Они представляют собой большей частью силикатные образования эллиптической или сферической формы, размером около 1 мм. Элементный состав хондритов практически идентичен составу Солнца (если исключить наиболее летучие, легкие элементы - водород и гелий). На основании этого факта ученые пришли к выводу, что хондриты образовались на заре существования Солнечной системы непосредственно из протопланетного облака.

Эти метеориты никогда не были частью крупных небесных тел, уже прошедших магматическую дифференциацию. Сформировались хондриты путем конденсации и аккреции протопланетного вещества, при этом испытав некоторое тепловое воздействие. Вещество хондритов довольно плотное - от 2,0 до 3,7 г/см 3 , - но хрупкое: метеорит можно раскрошить рукой.

Рассмотрим подробнее, какими по составу бывают метеориты этого типа, наиболее распространенного (85,7 %) из всех.

Углистые хондриты

Для углистых характерно большое содержание железа в силикатах. Их темный цвет обусловлен присутствием магнетита, а также таких примесей, как графит, сажа и органические соединения. Кроме того, углистые хондриты содержат связанную в гидросиликатах (хлорит, серпентин) воду.

По ряду признаков С-хондриты делятся на несколько групп, одна из которых - CI-хондриты - представляет исключительный интерес для ученых. Эти тела уникальны тем, что не содержат хондр. Предполагается, что вещество метеоритов этой группы вообще не подвергалось термическому воздействию, то есть осталось практически неизменным со времени конденсации протопланетного облака. Это самые древние тела Солнечной системы.

Органика в составе метеоритов

В углистых хондритах обнаруживаются такие органические соединения, как ароматические и а также карбоновые кислоты, азотистые основания (в живых организмах они входят в состав нуклеиновых кислот) и порфирины. Несмотря на высокие температуры, которым подвергается метеорит при прохождении через земную атмосферу, углеводороды сохраняются благодаря образованию коры плавления, служащей хорошим теплоизолятором.

Эти вещества, вероятнее всего, имеют абиогенное происхождение и свидетельствуют о процессах первичного органического синтеза уже в условиях протопланетного облака, учитывая возраст углистых хондритов. Так что молодая Земля уже на самых ранних этапах своего существования располагала исходным материалом для возникновения жизни.

Обыкновенные и энстатитовые хондриты

Наиболее часто встречаются обыкновенные хондриты (отсюда и их название). Эти метеориты содержат помимо силикатов никелистое железо и несут следы теплового метаморфизма при температурах 400-950 °C и ударных давлениях до 1000 атмосфер. Хондры этих тел часто имеют неправильную форму; в них присутствует обломочный материал. К обыкновенным хондритам относится, например, Челябинский метеорит.

Энстатитовые хондриты характеризуются тем, что железо в них содержится в основном в металлической форме, а силикатный компонент богат магнием (минерал энстатит). В составе метеоритов этой группы меньше летучих соединений, чем у прочих хондритов. Они подвергались тепловому метаморфизму при температурах 600-1000 °C.

Метеориты, относящиеся к обеим этим группам, часто представляют собой обломки астероидов, то есть они побывали в составе протопланетных тел небольшого размера, в которых не проходили процессы дифференциации недр.

Дифференцированные метеориты

Обратимся теперь к рассмотрению того, какие типы метеоритов выделяются по химическому составу в данной обширной группе.

Во-первых, это каменные ахондриты, во-вторых, железокаменные и, в-третьих, железные метеориты. Объединяет их то, что все представители перечисленных групп являются фрагментами массивных тел астероидного или планетного размера, недра которых подверглись дифференциации вещества.

Среди дифференцированных метеоритов встречаются как обломки астероидов, так и тела, выбитые с поверхности Луны или Марса.

Особенности дифференцированных метеоритов

Ахондрит не содержит особых включений и, будучи беден металлом, представляет собой силикатный метеорит. По составу и структуре ахондриты близки к земным и лунным базальтам. Большой интерес представляет группа метеоритов HED, предположительно происходящие из мантии Весты, которая считается сохранившейся протопланетой земной группы. Они схожи с ультраосновными породами верхней мантии Земли.

Железокаменные метеориты - палласиты и мезосидериты - характеризуются наличием силикатных включений в матрице из никелистого железа. Палласиты получили свое название в честь найденного в XVIII веке под Красноярском знаменитого Палласова железа.

Большинство железных метеоритов отличаются интересной структурой - «видманштеттеновыми фигурами», образованными никелистым железом с разным содержанием никеля. Такая структура сформировалась в условиях медленной кристаллизации никелистого железа.

История вещества «небесных камней»

Хондриты - это посланцы из древнейшей эпохи становления Солнечной системы - времени аккумуляции допланетного вещества и зарождения планетезималей - зародышей будущих планет. Радиоизотопные датировки хондритов показывают, что возраст их превышает 4,5 млрд лет.

Что касается дифференцированных метеоритов, то они демонстрируют нам формирование структуры планетных тел. Их вещество имеет отчетливые признаки плавления и перекристаллизации. Образование их могло происходить в разных частях дифференцированного родительского тела, впоследствии подвергшегося полному или частичному разрушению. Это определяет, какой химический состав метеоритов, какая структура образовались в каждом конкретном случае, и служит основой для их классификации.

Дифференцированные небесные гости также содержат информацию о последовательности процессов, протекавших в недрах родительских тел. Таковы, например, железокаменные метеориты. Состав их свидетельствует о неполном разделении легких силикатных и тяжелых металлических компонентов древней протопланеты.

В процессах столкновения и дробления астероидов разных типов и возрастов в поверхностных слоях многих из них могло происходить накопление перемешанных фрагментов различного происхождения. Затем в результате нового соударения подобный «композитный» осколок выбивался с поверхности. Примером может служить метеорит Кайдун, содержащий частицы нескольких типов хондритов и металлическое железо. Так что история метеоритного вещества зачастую весьма сложна и запутанна.

В настоящее время большое внимание уделяется исследованию астероидов и планет с помощью автоматических межпланетных станций. Безусловно, оно будет способствовать новым открытиям и более глубокому пониманию происхождения и эволюции таких свидетелей истории Солнечной системы (и нашей планеты в том числе), как метеориты.