Переход железа из ферромагнитного состояния в парамагнитное

Переход железа из ферромагнитного состояния в парамагнитное легко можно продемонстрировать с помощью самых простых средств. Я взял немного свернутой железной проволоки толщиной около миллиметра (такой проволокой фиксируют пробки бутылок с шампанским) и привязал ее с помощью длинного отрезка очень тонкой медной проволоки к горлышку бутылки. Сбоку закрепил магнит, вынутый из старого радиоприемника.

Необходимо было так разместить железную проволоку возле магнита, чтобы она "зависла в воздухе": с одной стороны ее притягивает магнит, но медная проволочка не дает железу приблизиться. После этого я отдалил железную проволочку от магнита так, чтобы она еще висела в воздухе, но была на грани падения.

Описанные манипуляции проводить было непросто: лишний раз убеждаешься, что магнитное поле дает сильное притяжение, но с расстоянием оно быстро ослабевает. Стоит сместить железную проволоку чуть ближе - и она намертво пристанет к магниту, чуть дальше - и она упадет под действием собственного веса.

Магнетизм - это вам не гравитация. С одной стороны, гравитационные силы слабые: вы можете поднять камень, который притягивает вся Земля - огромная планета. Но с другой стороны, от земного притяжения вы никуда не денетесь - даже на Луне: с расстоянием гравитационная сила убывает гораздо медленнее, чем магнетизм.

Вспоминается случай, описанный в книге Удивительная физика .

"...появился фантастический проект по спасению кораблей от пушечных ядер противника. Идея состояла в том, чтобы на корабле установить навстречу противнику мощные магниты, покрытые толстой броней. Ядра неприятеля должны были притягиваться близлежащим магнитом, сворачивать в его сторону и разбиваться о прочную броню. Остальные части корабля можно было бы оставить незащищенными.

В принципе все было верно, кроме того, что даже самый мощный из магнитов не может действовать на большом расстоянии. Представим себе, что мы имеем магнит, способный притянуть 10 т железа на расстоянии в 1 см. Это очень сильный магнит. Так вот, если мы отодвинем полезный предмет еще на 1 см, то сила притяжения упадет в 8 раз! На расстоянии в 1 м сила притяжения упадет в 1 000 000 раз, и ни о каком притягивании ядер не может быть и речи.

Но в прошлом веке еще не умели рассчитывать силы магнитов, и такой магнит-броня все-таки был построен в 1887 г. Этот магнит притягивал стальную плиту так, что для отрыва ее нужна была сила в 10 т. Четыре 120-килограммовых ядра висели одно за другим на полюсе магнита. Но за 2 м от магнита люди, имевшие стальные предметы в карманах, лишь едва чувствовали действие магнита. О притяжении ядер неприятеля нечего было и думать. Правда, на стрелку компаса такой магнит действовал за 10 км. "

Теперь приступим к эксперименту. Свернутая железная проволока "зависла " возле магнита: ферромагнетик притягивается к магнитному полю и стремится приблизиться к магниту. От этого его удерживает только медная проволока. А что случится, если ферромагнетик превратится в парамагнетик? Я взял горелку и направил пламя на железную проволоку (стараясь при этом не задевать пламенем магнит). Проволока раскалилась до красного свечения (частично - до желтого), начала медленно отдаляться от магнита - "провисать" и, наконец, упала. После охлаждения проволока снова стала притягиваться к магниту и опыт можно было повторять много раз.

При нагревании проволоки железо достигло температуры Кюри и стало парамагнетиком. Притяжение к магниту сохранилось, но резко ослабло - в результате проволока упала под действием собственного веса. Когда проволока вышла за пределы пламени, она быстро остыла и опять стала ферромагнетиком: она притянулась бы к магниту снова, если бы не отдалилась от него при падении.

Но, возможно, нагрев тут не при чем: поток газов из горелки просто "сдул" проволоку? Провел контрольный опыт: подачу газа открыл на максимум, но пламени зажигать не стал. Когда направил поток на проволочку, "зависшую" возле магнита, это не произвело на нее никакого впечатления.

Напомню, что для железа температура Кюри равна 770°С - с практической точки зрения это немало. Именно поэтому для опыта была выбрана легкая железная проволока - более массивный предмет нагреть до точки Кюри было бы сложнее. Даже в случае проволоки лишь часть ее достигло точки Кюри, но этого вполне достаточно - главное греть пламенем именно те участки проволоки, которые ближе всего к магниту (вспомните, что магнитные силы короткодействующие: притяжения дальних участков проволоки к магниту недостаточного для того, чтобы удержать ее в воздухе). В любом случае нужна хорошая горелка со сравнительно узким пламенем.

_______________________________________________

Можно записать как:

где $\overrightarrow{S_1}\overrightarrow{S_2}$ -- спины, электронов, которые взаимодействуют, $I_{ob}$ -- интеграл обменного взаимодействия. При $I_{ob}>0$ энергия взаимодействия минимальна в случае параллельных спинов. Она вызвана взаимодействием магнитного момента электрона (${\overrightarrow{p}}_m$) с магнитным полем (индукция обменного поля ${\overrightarrow{B}}_{ob}$) и определяется формулой:

Собственный магнитный момент электрона (${{\overrightarrow{p}}_m}^0$) связан со спином $\overrightarrow{S}\ $ соотношением:

где $q_e$, m -- заряд и масса электрона. Разделим и умножим правую часть выражение (1) на $\frac{q_e}{m}$, получим:

Положим, что второй электрон находится в магнитном поле, которое создает первый электрон, тогда следует записать:

Суммарная индукция магнитного поля складывается из индукции поля без обменного взаимодействия ($\overrightarrow{B}$) и индукции обменного поля (${\overrightarrow{B}}_{ob}$). Используя известные соотношения:

где $\overrightarrow{J}$ -- вектор намагниченности, $\varkappa $ -- магнитная восприимчивость, $\mu $ -- магнитная проницаемость, ${\mu }_0$ -- магнитная постоянная, $\overrightarrow{H}$ -- напряженность магнитного поля.

Если присутствует обменное взаимодействие, то формулу (10) можно обобщить до:

Пусть величина $\lambda $ -- постоянная обменного взаимодействия, тогда можно считать, что:

Подставим (12) в (11), получим:

Произведем замену:

где ${\varkappa }"$ характеризует восприимчивость с учетом обменного взаимодействия ($\varkappa =\frac{C}{T}$).

При $T > \lambda C$ вещество ведет себя как парамагнетик . Магнитная восприимчивость уменьшается при увеличении температуры. При $T=\lambda C$ в соответствии с (15) ${\varkappa }"\to \infty .$ Этот факт значит, что самые малые магнитные поля вызывают конечную намагниченность. Или иначе, при $T=\lambda C$ возникает спонтанная намагниченность, то есть парамагнетик переходит в ферромагнетик. Более точные теоретические изыскания показывают, что спонтанная намагниченность при $T=\lambda C$ возникает скачком, и при уменьшении температуры возрастает. То есть при $T

Температура Кюри. Закон Кюри -- Вейсса

Для любого ферромагнетика существует температура ($T_k$) при которой области спонтанной намагниченности распадаются и вещество теряет ферромагнитные свойства и становится парамагнетиком. Такая температура называется точкой Кюри (или температурой Кюри). Она для разных ферромагнетиков может существенно различаться. Так для железа $T_{kF_e}=768{\rm{}^\circ\!C}$, для никеля $T_{kN_i}=365{\rm{}^\circ\!C}$.

Магнитная восприимчивость ферромагнетика подчиняется закону Кюри -- Вейсса:

где величина $\lambda C=\theta $ называется температурой Кюри -- Вейсса. Теория показывает, что фазовый переход осуществляется не при температуре Кюри -- Вейсса, а близкой к ней. Иногда не делают различий между температурой Кюри, при которой происходит фазовый переход и температурой Кюри --Вейсса.

Пример 1

Задание: Используя функцию Ланжевена, покажите область спонтанной намагниченности ферромагнетика. Как связана спонтанная намагниченность и температура ферромагнетика?

Из теории Ланжевена можно получить для ферромагнетиков два следующих уравнения:

\ \

где $J_n$ -- намагничивание насыщения, $k$ -- постоянная Больцмана, $b$ -- постоянная Вейсса, $x=\frac{p_m(H+bJ)}{kT}$, $p_m$ -- магнитный момент. Первое уравнение удобно представить кривой Ланжевена ($OAA_0$) (рис.1). Уравнение (1.2) -- прямая СА, которая пересекает вертикальную ось в точке C, ордината которой в точке C равна -$\frac{H}{b}.\ $

Если температура ферромагнетика меньше температуры Кюри для него ($T \[\frac{kTn}{J_nb} В таком случае прямая AC пересечет кривую Ланжевена в точке А, ордината этой точки есть намагниченность ферромагнетика ($J_1$). Если уменьшать напряженность внешнего магнитного поля, то точка C ,будет подниматься к точке О, а точка А перемещаться к точке $A_0.$ Если H=0, то намагниченность равна $J_{0.}$ При температуре ниже точки Кюри ферромагнетик спонтанно намагничен. Энергии теплового движения молекул не достаточно, чтобы нарушить спонтанное намагничивание.

Допустим, что наклон прямой СА больше наклона кривой Ланжевена, то есть $T>T_k$. При наличие внешнего магнитного поля прямая СА займет положение ОD, то есть пересечет кривую Ланжевена только в начале координат, где намагничивание равно нулю. Спонтанное намагничивание отсутствует, намагничивание разрушается тепловым движением.

Пример 2

Задание: Используя функцию Ланжевена, получите закон Кюри -- Вейсса.

Используем рис.1 (Пример 1). Рассмотрим ферромагнетик при температуре $T>T_k.\ $Спонтанное намагничивание отсутствует. Для того чтобы намагнитить вещество, необходимо приложить внешнее магнитное поле. Рассчитаем намагничивание. Прямая АС при этом займет положение СЕ и будет пересекать кривую Ланжевена в точке $A_1$.Ордината точки $A_1$ будет определять намагниченность тела ($J_2$). Ордината ОС, полученная эмпирически равна -$\frac{H}{b}$, она мала, следовательно участок О$A_1$ кривой Ланжевена, так же мал. Значит, участок О$A_1$ можно считать отрезком прямой, и написать:

\ \

если ввести для температуры Кюри выражение:

\[\varkappa =\frac{T_k}{b(Т-T_k)}=\frac{С}{Т-T_k}\ \left(2.6\right),\]

где $С=const.$ Уравнение (2.6) -- закон Кюри -- Вейсса.

Ферромагнитные свойства вещества проявляются лишь при температурах ниже точки Кюри.

Подавляющее большинство атомов обладает собственным магнитным полем. Практически любой атом можно представить в виде крошечного магнитика с северным и южным полюсами. Этот магнитный эффект объясняется тем, что электроны при движении по орбитам вокруг атомного ядра создают микроскопические электрические токи, которые и порождают магнитные поля (см. Открытие Эрстеда). Сложив магнитные поля, индуцируемые всеми электронами атома, мы получим суммарное магнитное поле атома.

В большинстве веществ магнитные поля атомов ориентированы хаотично, в результате чего они взаимно гасятся. Однако в некоторых веществах и материалах (прежде всего в сплавах, содержащих железо, никель или кобальт) атомы упорядочиваются так, что их магнитные поля направлены в одну сторону и усиливают друг друга. В результате кусочек такого вещества оказывается окружен магнитным полем. Из таких веществ, называемых ферромагнетиками , поскольку обычно они содержат железо, и получают постоянные магниты .

Чтобы понять, как образуются ферромагнетики, представим себе кусок раскаленного железа. Из-за высокой температуры атомы в нем движутся очень быстро и хаотично, не оставляя возможности для упорядочения атомных магнитных полей в одном направлении. Однако по мере понижения температуры тепловое движение ослабевает и начинают преобладать другие эффекты. В железе (и некоторых других металлах) на атомном уровне действует сила, стремящаяся объединить магнитные диполи соседних атомов друг с другом.

Эта сила межатомного взаимодействия, получившая название обменной силы , была впервые описана Вернером Гейзенбергом (см. Принцип неопределенности Гейзенберга). Она обусловлена тем, что два соседних атома могут обмениваться внешними электронами, и эти электроны начинают принадлежать одновременно обоим атомам. Обменная сила прочно связывает атомы в кристаллической решетке металла и делает их магнитные поля параллельными и направленными в одну сторону. В результате упорядоченные магнитные поля соседних атомов взаимно усиливаются, а не гасятся. И такой эффект может наблюдаться в объеме вещества порядка 1 мм 3 , в котором содержится до 10 16 атомов. Атомы такого магнитного домена (см. ниже) выстроены таким образом, что мы имеем чистое магнитное поле.

При высоких температурах действию этой силы мешает тепловое движение атомов, при низких же температурах атомные магнитные поля могут усиливать друг друга. Температура, при которой происходит этот переход, называется точкой Кюри металла — в честь открывшего ее французского физика Пьера Кюри.

В реальности структура ферромагнетиков гораздо сложнее, чем описано выше. Обычно отдельные домены включают всего несколько тысяч атомов, магнитные поля которых однонаправлены, однако поля различных доменов направлены беспорядочно и по совокупности материал не намагничен. Поэтому обычный кусок железа магнитных свойств не проявляет. Однако при определенных условиях упорядочиваются и магнитные поля доменов, из которых состоит ферромагнетик (например, при остывании раскаленного железа в сильном магнитном поле). И тогда мы получаем постоянный магнит. Наличие точки Кюри объясняет также, почему при сильном нагревании постоянного магнита в какой-то момент происходит его полное размагничивание.

Marie Sklodowska Curie, 1867-1934

Польский, затем французский химик. Родилась в Варшаве в интеллигентской семье в тяжелый период российской оккупации, выпавшей на долю Польши. Учась в школе, помогала матери содержать пансион, прислуживая в нем в качестве горничной. После окончания школы какое-то время работала гувернанткой в состоятельных семьях, чтобы заработать средства на получение медицинского образования для своей сестры. На этот период приходится расстроенная родителями жениха помолвка Склодовской с юношей из семьи, где она прислуживала (родители сочли такой брак их сына недостойным их социального положения и упустили блестящую возможность улучшить свой фамильный генофонд). После получения ее сестрой медицинского образования в Париже туда же оправилась учиться и сама Склодовская.

Блестящие результаты вступительных экзаменов по физике и математике привлекли к молодой полячке пристальное внимание ведущих французских ученых. Результатом стала ее помолвка в 1894 году с Пьером Кюри и брак с ним, заключенный в следующем году. В те годы исследования явления радиоактивности только начинались, и работы в этой области был непочатый край. Пьер и Мария Кюри занялись извлечением радиоактивных образцов из руд, добываемых в Богемии, и их исследованием. В результате супругам удалось открыть сразу несколько новых радиоактивных элементов (см. Радиоактивный распад), один из которых был назван кюрием в их честь, а еще один — полонием в честь родины Марии. За эти исследования супруги Кюри были совместно с Анри Беккерелем (Henri Becquerel, 1852-1908), открывшим рентгеновские лучи, удостоены Нобелевской премии по физике за 1903 год. Именно Мария Кюри первой ввела в употребление термин «радиоактивность» — по названию первого открытого Кюри радиоактивного элемента радия.

После трагической гибели Пьера в 1906 году Мария Кюри отказалась от предложенной Сорбонским университетом пенсии и продолжила исследования. Ей удалось доказать, что в результате радиоактивного распада происходит трансмутация химических элементов, и, тем самым, положить начало новой отрасли естественных наук — радиохимии. За эту работу Мария Кюри была удостоена Нобелевской премии по химии за 1911 год и стала первым ученым — дважды лауреатом самой престижной премии за достижения в естественных науках. (В том же году Парижская Академия наук отклонила ее кандидатуру и не приняла Марию Кюри в свои ряды. Видимо, двух Нобелевских премий господам академикам показалось недостаточно для преодоления своей склонности к дискриминации по национальному и гендерному признаку.)

В годы Первой мировой войны Мария Кюри занималась активными прикладными медицинскими исследованиями, работая на фронте с портативной рентгеновской установкой. В 1921 году в Америке была открыта подписка на сбор средств на покупку для Марии Кюри 1 грамма чистого радия, который был ей необходим для дальнейших исследований. В ходе ее триумфальной поездки по Америке с публичными лекциями ключик от шкатулки с драгоценным радиоактивным металлом был вручен Кюри самим Президентом США Уорреном Хардингом (Warren Harding).

Последние годы жизни Марии Кюри были заполнены важными международными инициативами в области науки и медицины. В начале 1930-х годов здоровье Марии Кюри резко ухудшилось — сказались огромные дозы радиоактивного облучения, полученные ею в процессе многолетних экспериментов, — и в 1934 году она скончалась в санатории во Французских Альпах.

Pierre Curie, 1859-1906

Французский физик. Родился в Париже в семье видного врача. Получил домашнее образование. Первоначально изучал фармакологию в Сорбонне, однако очень скоро увлекся естественнонаучными экспериментами с кристаллами, которые проводил его брат Жак, и со временем стал директором Школы физики и химии (École de Physique et Chimie). В 1895 году женился на Марии Склодовской и в том же году защитил докторскую диссертацию по магнитным свойствам парамагнетиков (см. Закон Кюри). Вместе с супругой в тяжелейших рабочих условиях проводил в Школе опыты по изучению свойств радиоактивных веществ. В 1904 году получил назначение на пост профессора физики и директора лаборатории (вскоре преобразованной в Институт радия) Сорбонны. В апреле 1906 года Пьер Кюри погиб в результате нелепого несчастного случая, попав под колеса извозчика. Он даже не успел завершить оборудование своей новой лаборатории.

температура Кюри, температура фазового перехода (См. Фазовый переход) II рода, связанного со скачкообразным изменением свойств симметрии вещества (например, магнитной - в ферромагнетиках (См. Ферромагнетики), электрической - в сегнетоэлектриках (См. Сегнетоэлектрики), кристаллохимической - в упорядоченных сплавах (См. Сплавы)). Назван по имени П. Кюри, подробно изучившего этот переход у ферромагнетиков. При температуре Т ниже К. т. Θ ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью и определённой магнитно-кристаллической симметрией. В К. т. (T = Θ) интенсивность теплового движения атомов ферромагнетика оказывается достаточной для разрушения его самопроизвольной намагниченности («магнитного порядка») и изменения симметрии, в результате ферромагнетик становится парамагнетиком. Аналогично у антиферромагнетиков при Т = Θ (в т. н. антиферромагнитной К. т. или Нееля точке (См. Нееля точка)) происходит разрушение характерной для них магнитной структуры (магнитных подрешёток), и антиферромагнетики становятся парамагнетиками. В сегнетоэлектриках и антисегнетоэлектриках при Т = Θ тепловое движение атомов сводит к нулю самопроизвольную упорядоченную ориентацию электрических диполей элементарных ячеек кристаллической решётки. В упорядоченных сплавах в К. т. (её называют в случае сплавов также точкой Курнакова) степень дальнего порядка в расположении атомов (ионов) компонентов сплава становится равной нулю.

Т. о., во всех случаях фазовых переходов II рода (типа К. т.) при Т = Θ в веществе происходит исчезновение того или иного вида атомного «порядка» (упорядоченной ориентации магнитных или электрических моментов, дальнего порядка в распределении атомов по узлам кристаллической решётки в сплавах и т. п.). Вблизи К. т. в веществе происходят специфические изменения многих физических свойств (например, теплоёмкости, магнитной восприимчивости и др.), достигающие максимума при Т= Θ (см. Критические явления), что обычно и используется для точного определения температуры фазового перехода. Значения К. т. для различных веществ приведены в статьях Антиферромагнетизм, Ферромагнетизм, Сегнетоэлектрики.

  • - внесистемная единица активности радиоактивных нуклидов...
  • - температура, выше к-рой исчезает магнитоупорядоченное состояние феррои ферримагнетиков, переходящих в неупорядоченное состояние...

    Естествознание. Энциклопедический словарь

  • - Внесистемная единица активности нуклида в радиоактивном источнике...

    Словарь мер

  • - не подлежащая применению внесистемная ед. активности нуклида в радиоактивном источнике. Обозначение - Ки. 1 Ки = 3,7*1010 Бк...
  • - темп-pa нек-рых фазовых переходов 2-го рода. Напр., в К. т. ферромагнетики теряют свои особые магнитные св-ва: в К. т. или при более высокой темп-ре ведут себя как обычные парамагнетики...

    Большой энциклопедический политехнический словарь

  • - Curie внесистемная единица активности, первоначально активность 1 г изотопа радия-226...

    Термины атомной энергетики

  • - curie, Ci - .Eдиница активности радионуклида: 1 Ки равен 3,7·1010 Бк...

    Молекулярная биология и генетика. Толковый словарь

  • - единица измерения радиоактивности естественной или искусственной; определяется таким количеством любого радиоактивного вещества, и котором происходит 3,700·1010 распадов и секунду...

    Геологическая энциклопедия

  • - современные французские физики, открывшие в 1881 г. пьезоэлектричество в кристаллах, а затем электрическое расширение кварца...

    Энциклопедический словарь Брокгауза и Евфрона

  • - I ́ Ирен, французский физик; см. Жолио- И. II ́ Пьер, французский физик, член Французской АН. После окончания Парижского университета работал там же ассистентом...
  • - температура Кюри, температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества, электрической - в сегнетоэлектриках, кристаллохимической - в упорядоченных...

    Большая Советская энциклопедия

  • - то же, что Нееля точка...
  • - ВЕЙСА ЗАКОН - установленная П. Вейсом зависимость магнитной восприимчивости? от температуры Т в виде??С/ ...

    Большой энциклопедический словарь

  • - внесистемная единица активности радиоактивных изотопов...

    Большой энциклопедический словарь

  • - Словесный портрет, детали рисунка рожицы...

    Словарь народной фразеологии

  • - Жарг. шк. Шутл. Учитель, учительница русского языка. . БСРЖ, 594...

    Большой словарь русских поговорок

"Кюри точка" в книгах

Пьер Кюри

Из книги Мария Кюри автора Кюри Ева

Пьер Кюри Мари вычеркнула из программы своей жизни любовь и замужество.Это не так уже оригинально. Бедная девушка, униженная и разочарованная первой идиллией, клянется никогда больше не любить. Тем более студентке-славянке с ее пламенным стремлением к умственным высотам

Кюри Мария

Из книги Персональные помощники руководителя автора Бабаев Маариф Арзулла

Мария Кюри

Из книги Женщины, изменившие мир автора Великовская Яна

Мария Кюри Мари?я Склодо?вская-Кюри? – одна из величайших женщин ученых-экспериментаторов, работала в Польше и во Франции, дважды была названа лауреатом Нобелевской премии по физике в 1903 году и по химии в 1911(она была первым в истории дважды лауреатом Нобелевской премии),

Жолио-Кюри

Из книги Законы успеха автора

Жолио-Кюри Фредерик Жолио-Кюри (1900–1958) – французский физик и общественный деятель, лауреат Нобелевской премии по химии (1935). Чем дальше эксперимент от теории, тем ближе он к Нобелевской

Склодовская-Кюри

Из книги Законы успеха автора Кондрашов Анатолий Павлович

Склодовская-Кюри Мария Склодовская-Кюри (1867–1934) – польско-французский физик и химик, пионер в области исследования радиоактивности; первая женщина, ставшая профессором в Сорбонне; лауреат двух Нобелевских премий – по физике (1903) и по химии (1911). В течение всей моей

Точка, точка, запятая, или Рождение эмотикона

Из книги Самоучитель олбанского автора Кронгауз Максим Анисимович

Упражнение 4 Истинный центр – точка покоя, точка созидания иной реальности

Из книги Крайон. 45 практик, чтобы научиться получать помощь Вселенной автора Лиман Артур

Упражнение 4 Истинный центр – точка покоя, точка созидания иной реальности Сядьте в удобную позу, расслабьтесь, закройте глаза. Дышите медленно и размеренно. Настройтесь на восприятие своего внутреннего пространства и сосредоточьтесь на центре, вашей точке опоры.

Раздел II. Точка, точка, запятая… Приметы о внешнем виде и личной гигиене

Из книги Приметы для девочек автора Вакса Ольга

Раздел II. Точка, точка, запятая… Приметы о внешнем виде и личной гигиене БРОВИ - есть очень много примет, связанных с бровями, но они настолько противоречивы, что каждый может выбрать для себя что-нибудь по собственному усмотрению и свято в это верить.Возьмем, к примеру,

4. "ИНДУКЦИЯ" АДАМА СМИТА И "ДЕДУКЦИЯ" ДАВИДА РИКАРДО. ТОЧКА ЗРЕНИЯ ЛОККА И ТОЧКА ЗРЕНИЯ СПИНОЗЫ В ПОЛИТИЧЕСКОЙ ЭКОНОМИИ

Из книги Диалектика абстрактного и конкретного в научно-теоретическом мышлении автора Ильенков Эвальд Васильевич

4. "ИНДУКЦИЯ" АДАМА СМИТА И "ДЕДУКЦИЯ" ДАВИДА РИКАРДО. ТОЧКА ЗРЕНИЯ ЛОККА И ТОЧКА ЗРЕНИЯ СПИНОЗЫ В ПОЛИТИЧЕСКОЙ ЭКОНОМИИ Логические моменты и коллизии в развитии политической экономии остались бы непонятными, если бы мы не установили реальные связи между нею -- и

Кюри точка

Из книги Большая Советская Энциклопедия (КЮ) автора БСЭ

Глава 11. Соединения точка-точка и ретрансляторы

Из книги Wi-Fi. Беспроводная сеть автора Росс Джон

Глава 11. Соединения точка-точка и ретрансляторы Использование радио для расширения зоны действия локальной сети - идея не новая. Оборудование и программное обеспечение для добавления удаленных клиентов существует, по крайней мере, уже в течение десяти лет. Школьники,

4.5 Протоколы связей "точка-точка"

автора Фейт Сидни М

4.5 Протоколы связей "точка-точка" Датаграммы IP могут передаваться по связям "точка-точка" между парой хостов, хостом и маршрутизатором или парой маршрутизаторов. Протокол IP передает датаграмму посредством множества различных взаимодействий TCP или UDP по одиночной связи

D.2.1 Присваивание маски линии "точка-точка"

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

D.2.1 Присваивание маски линии "точка-точка" Начнем со связи "точка-точка" (Point-to-Point). Хотя в некоторых сайтах не присваивают IP-адреса линиям "точка-точка", многие маршрутизаторы обеспечивают такую возможность, и мы рассмотрим сначала именно этот вариант. Для любой цепи

Из книги Пальцетерапия автора Пак Чже Ву

Болезненная точка соответствия - это лечебная точка Для эффективного лечения по системам соответствия пальцев неважно, чем вызвано заболевание, необходимо лишь знать, где оно располагается. Этого достаточно, чтобы на основании подобия правильно находить лечебные

Болезненная точка соответствия - это лечебная точка

Из книги Пальцетерапия автора Ву Пак Чжэ

Болезненная точка соответствия - это лечебная точка Для эффективного лечения по системам соответствия пальцев неважно, чем вызвано заболевание, необходимо лишь знать, где оно располагается. Этого достаточно, чтобы на основании подобия правильно находить лечебные точки

существуют сильномагнитные вещества - ферромагнетики - вещества, обладающие спонтанной намагниченностью, т. е. они намагниче­ны даже при отсутствии внешнего магнитного поля. К ферромагнетикам кроме основ­ного их представителя - железа (от него и идет название «ферромагнетизм») - от­носятся, например, кобальт, никель, гадолиний, их сплавы и соединения.

Ферромагнетики помимо способности сильно намагничиваться обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Если для слабомагнитных веществ зависимость J от Н линейна, то для ферромагнетиков эта зависимость, является довольно сложной. По мере возрастания Н намагниченность J сначала растет быстро, затем медленнее и, наконец, достигается так называемоемагнитное насыщение J нас, уже не зависящее от напряженности поля. Подобный характер зависимости J от Н можно объяснить тем, что по мере увеличения намагничивающего поля увеличивает­ся степень ориентации молекулярных магнитных моментов по полю, однако этот процесс начнет замедляться, когда остается все меньше и меньше неориентированных моментов, и, наконец, когда все моменты будут ориентированы по полю, дальнейшее увеличение J прекращается и наступает магнитное насыщение.

Магнитная индукция B = m 0 (H+J ) в слабых полях растет быстро с ростом H вследствие увеличения J , а в сильных полях, поскольку второе слагаемое постоянно (J=J нас), В растет с увеличением Н по линейному закону.

Существенная особенность ферромагнетиков - не только большие значения m (на­пример, для железа - 5000, для сплава супермаллоя - 800 000!), но и зависимость m от Н . Вначале m растет с увеличением Н, затем, достигая максимума, начинает уменьшаться, стремясь в случае сильных полей к 1 (m = B /(m 0 H ) = 1 + J/H, поэтому при J = J нас = const с ростом Н отношение J/H ® 0, m ®1).

Характерная особенность ферромагнетиков состоит также в том, что для них зависимость J от H (а следовательно, и В от Н ) определяется предысторией намагниче­ния ферромагнетика. Это явление получило название магнитного гистерезиса . Если намагнитить ферромагнетик до насыщения, а затем начать умень­шать напряженность Н намагничивающего поля, то, как показывает опыт, умень­шение J. При Н = 0 J отличается от нуля, т. е. в ферромагнетике наблюдается остаточное намагничение J ос. С наличием остаточного намагничения связано существованиепостоянных магнитов. Намагничение обращается в нуль под действием поля Н с, имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность Н с называется коэрцитивной силой .

При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается, и при Н = –H нас достигается насыщение. Затем фер­ромагнетик можно опять размагнитить и вновь перемагнитить до насыщения

Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой, которая называетсяпетлей гистерезиса (от греч. «запаздывание»). Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, т.е. одному и тому же значению Н соответствует несколько значений J.

Различные ферромагнетики дают разные гистерезисные петли. Ферромагнетики с малой (в пределах от нескольких тысячных до 1-2 А/см) коэрцитивной силой Нс (с узкой петлей гистерезиса) называются мягкими , с большой (от нескольких десятков до нескольких тысяч ампер на сантиметр) коэрцитивной силой (с широкой петлей гистерезиса) - жесткими . Величины Нс, J ос и m max определяют применимость фер­ромагнетиков для тех или иных практических целей. Taк, жесткие ферромагнетики (например, углеродистые и вольфрамовые стали) применяются для изготовления постоянных магнитов, а мягкие (например, мягкое железо, сплав железа с нике­лем) - для изготовления сердечников трансформаторов.

Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри , при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не со­провождается поглощением или выделением теплоты, т.е. в точке Кюри происходит фазовый переход II рода (см. § 75).

Наконец, процесс намагничения ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции

Природа ферромагнетизма

Рассматривая магнитные свойства ферромагнетиков, мы не вскрывали физическую природу этого явления.

Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Спонтанное намагничение, однако, находится в кажущемся противоречии с тем, что многие ферромагнитные материалы даже при температурах ниже точки Кюри не намагничены. Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых макроскопических областей - доменов , самопроизвольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных до­менов ориентированы хаотически и компенсируют друг друга, поэтому результиру­ющий магнитный момент ферромагнетика равен нулю и ферромагнетик не намаг­ничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдель­ных атомов, как это имеет место в случае парамагнетиков, а целых областей спонтан­ной намагниченности. Поэтому с ростом Н намагниченность J и магнит­ная индукции В уже в довольно слабых полях растут очень быстро. Этим объясняется также увеличение m ферромагнетиков до максимального значения в слабых полях. Эксперименты показали, что зависимость B от H не является такой плавной, а имеет ступенчатый вид. Это свидетельствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком.

При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепловое движение не в состоянии быстро дезориен­тировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса. Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную силу; размаг­ничиванию способствуют также встряхивание и нагревание ферромагнетика. Точка Кюри оказывается той температурой, выше которой происходит разрушение доменной структуры.

Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур . На тщательно отполированную поверхность ферромагнетика наносится водная суспензия мелкого ферромагнитного порошка (например, магнетита). Частицы оседают преиму­щественно в местах максимальной неоднородности магнитного поля, т. е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов и подобную картину можно сфотографировать под микроскопом. Линейные размеры доменов оказались равными 10 –4 - 10 –2 см.

В настоящее время установлено, что магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами элект­ронов (прямым экспериментальным указанием этого служит опыт Эйнштейна. Установлено также, что ферромагнитными свойствами могут обладать только кристаллические вещества, в атомах которых имеются недостроен­ные внутренние электронные оболочки с нескомпенсированными спинами. В подо­бных кристаллах могут возникать силы, которые вынуждают спиновые магнитные моменты электронов ориентироваться параллельно друг другу, что и приводит к возникновению областей спонтанного намагничения. Эти силы, называемые обменными силами, имеют квантовую природу - они обусловлены волновыми свойствами электронов.


Похожая информация.