Проводник, по которому протекает электрический ток, создает магнитное поле которое характеризуется вектором напряженности `H (рис. 3). Напряженность магнитного поля подчиняется принципу суперпозиции

а, согласно закону Био-Савара-Лапласа,

где I – сила тока в проводнике, – вектор, имеющий длину элементарного отрезка проводника и направленный по направлению тока, `r – радиус вектор, соединяющий элемент с рассматриваемой точкой P .

Одной из часто встречающихся конфигураций проводников с током является виток в виде кольца радиуса R (рис. 3, а). Магнитное поле такого тока в плоскости, проходящей через ось симметрии, имеет вид (см. рис. 3, б). Поле в целом должно иметь вращательную симметрию относительно оси z (рис. 3, б), а сами силовые линии должны быть симметричны относительно плоскости петли (плоскости xy ). Поле в непосредственной близости от проводника будет напоминать поле вблизи длинного прямого провода, так как здесь влияние удаленных частей петли относительно невелико. На оси кругового тока поле направлено вдоль оси Z .

Вычислим напряженность магнитного поля на оси кольца в точке расположенной на расстоянии z от плоскости кольца. По формуле (6) достаточно вычислить z-компоненту вектора :

. (7)

Интегрируя по всему кольцу, получим òdl = 2pR . Поскольку, согласно теореме Пифагора r 2 = R 2 + z 2 , то искомое поле в точке на оси по величине равно

. (8)

Направление вектора `H может быть направлено по правилу правого винта.

В центре кольца z = 0 и формула (8) упрощается:

Нас интересуеткороткая катушка – цилиндрическая проволочная катушка, состоящая из N витков одинакового радиуса. Из-за осевой симметрии и в соответствии с принципом суперпозиции магнитное поле такой катушки на оси H представляет собой алгебраическую сумму полей отдельных витков H i: . Таким образом, магнитное поле короткой катушки, содержащей N к витков, в произвольной точке оси рассчитывается по формулам

, , (10)

где H – напряженность, B – индукция магнитного поля.



Магнитное поле соленоида с током

Для расчета индукции магнитного поля в соленоиде используется теорема о циркуляции вектора магнитной индукции:

, (11)

где – алгебраическая сумма токов, охватываемых контуром L произвольной формы, n – число проводников с токами, охватываемых контуром. При этом каждый ток учитывается столько раз, сколько раз он охватывается контуром, а положительным считается ток, направление которого образует с направлением обхода по контуру правовинтовую систему, – элемент контура L .

Применим теорему о циркуляции вектора магнитной индукции к соленоиду, длиной l , имеющим N с витков с силой тока I (рис. 4). В расчете учтем, что практически всё поле сосредоточено внутри соленоида (краевыми эффектами пренебрегаем) и оно является однородным. Тогда формула 11 примет вид:

,

откуда находим индукцию магнитного поля, создаваемую током внутри соленоида:


Рис. 4. Соленоид с током и его магнитное поле


Схема установки

Рис. 5 Принципиальная электрическая схема установки

1 – измеритель индукции магнитного поля (тесламетр), А – амперметр, 2 – соединительный провод, 3 – измерительный щуп, 4 – датчик Холла*, 5 – исследуемый объект (короткая катушка, прямой проводник, соленоид), 6 – источник тока, 7 – линейка для фиксирования положения датчика, 8 – держатель щупа.

* – принцип работы датчика основан на явлении эффекта Холла (см. лаб. работу № 15 Изучение эффекта Холла)

Порядок выполнения работы

1. Исследование магнитного поля короткой катушки

1.1. Включить приборы. Выключатели источника питания и тесламетра расположены на задних панелях.

1.2. В качестве исследуемого объекта 5 (см. рис. 5) установить в держатель короткую катушку и подключить ее к источнику тока 6.

1.3. Регулятор напряжения на источнике 6 поставить в среднее положение. Установить силу тока, равную нулю, путем регулировки выхода силы тока на источнике 6 и произвести контроль по амперметру (значение должно быть равно нулю).

1.4. Регуляторами грубой 1 и тонкой настройки 2 (рис. 6) добиться нулевых показаний тесламетра.

1.5. Установить держатель с измерительным щупом на линейке в удобном для считывания положении – например, в координате 300 мм. В дальнейшем принять это положение за нулевое. Следить при установке и в процессе измерений за параллельностью между щупом и линейкой.

1.6. Расположить держатель с короткой катушкой таким образом, чтобы датчик Холла 4 находился в центре витков катушки (рис. 7). Для этого использовать зажимно – регулировочный винт по высоте на держателе измерительного щупа. Плоскость катушки должна быть перпендикулярна щупу. В процессе подготовки измерений перемещать держатель с исследуемым образцом, оставляя неподвижным измерительный щуп.

1.7. Убедиться, что за время прогрева тесламетра, его показания остались нулевыми. Если это не выполнено – установить нулевые показания тесламетра при нулевом токе в образце.

1.8. Установить силу тока в короткой катушке 5 А (путем регулировки выхода на источнике питания 6, Constanter/Netzgerät Universal).

1.9. Измерить магнитную индукцию B эксп на оси катушки в зависимости от расстояния до центра катушки. Для этого смещать держатель измерительного щупа по линейке, сохраняя параллельность своему первоначальному положению. Отрицательные значения z соответствуют смещению щупа в область меньших координат, чем начальная, и наоборот – положительные значения z – в области больших координат. Данные занести в таблицу 1.

Таблица 1 Зависимость магнитной индукции на оси короткой катушки от расстояния до центра катушки

1.10. Повторить пункты 1.2 – 1.7.

1.11. Измерить зависимость индукции в центре витка от силы тока, проходящей через катушку. Данные занести в таблицу 2.

Таблица 2 Зависимость магнитной индукции в центре короткой катушки от силы тока в ней

2. Исследование магнитного поля соленоида

2.1. В качестве исследуемого объекта 5 установить соленоид на регулируемую по высоте металлическую скамью из немагнитного материала (рис. 8).

2.2. Повторить 1.3 – 1.5.

2.3. Отрегулировать высоту скамьи так, чтобы измерительный щуп проходил по оси симметрии соленоида, а датчик Холла оказался в середине витков соленоида.

2.4. Повторить пункты 1.7 – 1.11 (вместо короткой катушки здесь используется соленоид). Данные занести соответственно в таблицы 3 и 4. При этом координату центра соленоида определить следующим образом: установить датчик Холла в начало соленоида и зафиксировать координату держателя. Затем передвигать держатель по линейке вдоль оси соленоида до тех пор пока конец датчика не окажется на другой стороне соленоида. Зафиксировать координату держателя в этом положении. Координата центра соленоида будет равна среднему арифметическому из двух измеренных координат.

Таблица 3 Зависимость магнитной индукции на оси соленоида от расстояния до его центра.

2.5. Повторить пункты 1.3 – 1.7.

2.6. Измерить зависимость индукции в центре соленоида от силы тока, проходящей через катушку. Данные занести в таблицу 4.

Таблица 4 Зависимость магнитной индукции в центре соленоида от силы тока в нем

3. Исследование магнитного поля прямого проводника с током

3.1. В качестве исследуемого объекта 5 установить прямой проводник с током (рис. 9, a). Для этого соединить провода, идущие от амперметра и источника питания между собой (закоротить внешнюю цепь) и расположить проводник непосредственно на краю щупа 3 у датчика 4, перпендикулярно щупу (рис. 9, b). Для поддержки проводника использовать регулируемую по высоте металлическую скамью из немагнитного материала с одной стороны щупа и держатель для исследуемых образцов – с другой стороны (в одно из гнезд держателя можно включить клемму проводника для более надежной фиксации этого проводника). Проводнику придать прямолинейную форму.

3.2. Повторить пункты 1.3 – 1.5.

3.3. Определить зависимость магнитной индукции от силы тока в проводнике. Измеренные данные занести в таблицу 5.

Таблица 5 Зависимость магнитной индукции, создаваемой прямолинейным проводником, от силы тока в нем

4. Определение параметров исследованных объектов

4.1. Определить (при необходимости – измерить) и записать в таблицу 6 необходимые для расчетов данные: N к – число витков короткой катушки, R – её радиус; N с – число витков соленоида, l – его длина, L – его индуктивность (указано на соленоиде), d – его диаметр.

Таблица 6 Параметры исследуемых образцов

N к R N с d l L

Обработка результатов

1. По формуле (10) рассчитать магнитную индукцию, создаваемую короткой катушкой с током. Данные занести в таблицы 1 и 2. По данным таблицы 1 построить теоретическую и экспериментальную зависимости магнитной индукции на оси короткой катушки от расстояния z до центра катушки. Теоретическую и экспериментальную зависимости построить в одних координатных осях.

2. По данным таблицы 2 построить теоретическую и экспериментальную зависимости магнитной индукции в центре короткой катушки от силы тока в ней. Теоретическую и экспериментальную зависимости построить в одних координатных осях. Рассчитать напряженность магнитного поля в центре катушки при силе тока в ней 5 А с использованием формулы (10).

3. По формуле (12) рассчитать магнитную индукцию, создаваемую соленоидом. Данные занести в таблицы 3 и 4. По данным таблицы 3 построить теоретическую и экспериментальную зависимости магнитной индукции на оси соленоида от расстояния z до его центра. Теоретическую и экспериментальную зависимости построить в одних координатных осях.

4. По данным таблицы 4 построить теоретическую и экспериментальную зависимости магнитной индукции в центре соленоида от силы тока в нем. Теоретическую и экспериментальную зависимости построить в одних координатных осях. Рассчитать напряженность магнитного поля в центре соленоида при силе тока в нем 5 А.

5. По данным таблицы 5 построить экспериментальную зависимость магнитной индукции, создаваемой проводником, от силы тока в нем.

6. На основании формулы (5) определить кратчайшее расстояние r o от датчика до проводника с током (это расстояние обусловлено толщиной изоляции проводника и толщиной изоляции датчика в щупе). Результаты расчета занести в таблицу 5. Вычислить среднее арифметическое значение r o , сопоставить с визуально наблюдаемой величиной.

7. Рассчитать индуктивность соленоида L. Результаты расчетов занести в таблицу 4. Сопоставить полученное среднее значение L с зафиксированным значением индуктивности в таблице 6. Для расчета воспользоваться формулой , где Y – потокосцепление, Y = N с BS, где В – магнитная индукция в соленоиде (по данным таблицы 4), S = pd 2 /4 – площадь сечения соленоида.

Контрольные вопросы

1. В чем заключается закон Био-Савара-Лапласа и как его применять при расчете магнитных полей проводников с током?

2. Как определяется направление вектора H в законе Био-Савара-Лапласа?

3. Как взаимосвязаны вектора магнитной индукции B и напряженности H между собой? Каковы их единицы измерения?

4. Как используется закон Био-Савара-Лапласа в расчете магнитных полей?

5. Как измеряется магнитное поле в данной работе? На каком физическом явлении основан принцип измерения магнитного поля?

6. Дайте определение индуктивности, магнитного потока, потокосцепления. Укажите единицы измерения этих величин.

библиографический список

учебной литературы

1. Калашников Н.П. Основы физики. М.: Дрофа, 2004. Т. 1

2. Савельев И.В . Курс физики. М.: Наука, 1998. Т. 2.

3. Детлаф А.А. , Яворский Б.М. Курс физики. М.: Высшая школа, 2000.

4. Иродов И.Е Электромагнетизм. М.: Бином, 2006.

5. Яворский Б.М. , Детлаф А.А. Справочник по физике. М.: Наука, 1998.

Электромагнетизм - это совокупность явлений, обусловленных связью электрических токов и магнитных полей. Иногда эта связь приводит к нежелательным эффектам. К примеру, ток, протекающий по электрическим кабелям на корабле, вызывает ненужное отклонение судового компаса. Однако нередко электричество намеренно используется для создания магнитных полей большой интенсивности. В качестве примера можно привести электромагниты. О них мы сегодня и поговорим.

и магнитный поток

Интенсивность магнитного поля можно определить числом линий магнитного потока, которое приходится на единицу площади. возникает всюду, где протекает электрический ток, причем магнитный поток в воздухе пропорционален последнему. Прямой провод, несущий ток, можно согнуть в виток. При достаточно малом радиусе витка это приводит к возрастанию магнитного потока. При этом сила тока не увеличивается.

Эффект концентрации магнитного потока можно еще усилить, увеличивая количество витков, т. е. скручивая провод в катушку. Справедливо и обратное. Магнитное поле катушки с током можно ослабить, если уменьшить количество витков.

Выведем важное соотношение. В точке максимальной плотности магнитного потока (в ней на единицу площади приходится больше всего линий потока) соотношение между электрическим током I, числом витков провода n и магнитным потоком В выражается так: In пропорционально В. Ток в 12 А, текущий по катушке из 3 витков, создает точно такое же магнитное поле, как и ток в 3 А, текущий по катушке из 12 витков. Это важно знать, решая практические задачи.

Соленоид

Катушка из намотанного провода, создающая магнитное поле, называется соленоидом. Провода можно наматывать на железо (железный сердечник). Подойдет и немагнитная основа (например, воздушный сердечник). Как вы видите, можно использовать не только железо, чтобы создать магнитное поле катушки с током. С точки зрения величины потока любой немагнитный сердечник эквивалентен воздуху. То есть приведенное выше соотношение, связывающее ток, число витков и поток, в этом случае выполняется достаточно точно. Таким образом, магнитное поле катушки с током можно ослабить, если применить эту закономерность.

Использование железа в соленоиде

Для чего в соленоиде используется железо? Его наличие влияет на магнитное поле катушки с током в двух отношениях. Оно увеличивает тока, часто в тысячи раз и более. Однако при этом может нарушаться одна важная пропорциональная зависимость. Речь идет о той, которая существует между магнитным потоком и током в катушках с воздушным сердечником.

Микроскопические области в железе, домены (точнее, их при действии магнитного поля, которое создается током, строятся в одном направлении. В результате при наличии железного сердечника данный ток создает больший магнитный поток на единицу сечения провода. Таким образом, плотность потока существенно возрастает. Когда все домены выстраиваются в одном направлении, дальнейшее увеличение тока (или числа витков в катушке) лишь незначительно повышает плотность магнитного потока.

Расскажем теперь немного об индукции. Это важная часть интересующей нас темы.

Индукция магнитного поля катушки с током

Хотя магнитное поле соленоида с железным сердечником гораздо сильнее магнитного поля соленоида с воздушным сердечником, величина его ограничена свойствами железа. Размер того, которое создается катушкой с воздушным сердечником, теоретически не имеет предела. Однако, как правило, получать огромные токи, необходимые для создания поля, сравнимого по величине с полем соленоида с железным сердечником, очень трудно и дорого. Не всегда следует идти этим путем.

Что будет, если изменить магнитное поле катушки с током? Это действие может породить электрический ток точно так же, как ток создает магнитное поле. При приближении магнита к проводнику магнитные силовые линии, пересекающие проводник, индуцируют в нем напряжение. Полярность индуцированного напряжения зависит от полярности и направления изменения магнитного потока. Этот эффект значительно сильнее проявляется в катушке, чем в отдельном витке: он пропорционален числу витков в обмотке. При наличии железного сердечника индуцированное напряжение в соленоиде увеличивается. При таком способе необходимо движение проводника относительно магнитного потока. Если проводник не будет пересекать линии магнитного потока, напряжение не возникнет.

Как получают энергию

Электрические генераторы вырабатывают ток на основе тех же принципов. Обычно магнит вращается между катушками. Величина индуцированного напряжения зависит от величины поля магнита и скорости его вращения (они определяют скорость изменения магнитного потока). Напряжение в проводнике прямо пропорционально скорости магнитного потока в нем.

Во многих генераторах магнит заменен соленоидом. Для того чтобы создать магнитное поле катушки с током, соленоид подключают к Какой в этом случае будет электрическая мощность, вырабатываемая генератором? Она равна произведению напряжения на силу тока. С другой стороны, взаимосвязь тока в проводнике и магнитного потока позволяет использовать поток, создаваемый электрическим током в магнитном поле, для получения механического движения. По этому принципу работают электродвигатели и некоторые электроизмерительные приборы. Однако для создания движения в них необходимо затрачивать дополнительную электрическую мощность.

Сильные магнитные поля

В настоящее время, используя удается получать невиданной интенсивности магнитное поле катушки с током. Электромагниты могут быть очень мощными. При этом ток протекает без потерь, т. е. не вызывает нагрева материала. Это позволяет применять большое напряжение в соленоидах с воздушным сердечником и избежать ограничений, обусловленных эффектом насыщения. Очень большие перспективы открывает такое мощное магнитное поле катушки с током. Электромагниты и их применение не зря интересуют множество ученых. Ведь сильные поля могут использоваться для движения на магнитной «подушке» и создания новых видов электродвигателей и генераторов. Они способны высокую мощность при малой стоимости.

Энергия магнитного поля катушки с током активно используется человечеством. Она уже долгие годы широко применяется, в частности на железных дорогах. О том, как используются магнитные линии поля катушки с током для регулирования движения поездов, мы сейчас и поговорим.

Магниты на железных дорогах

На железных дорогах обычно применяются системы, в которых в целях большей безопасности электромагниты и постоянные магниты дополняют друг друга. Как же действуют эти системы? Сильный прикрепляют вплотную к рельсу на определенном расстоянии от светофоров. Во время прохождения поезда над магнитом ось постоянного плоского магнита в кабине машиниста поворачивается на малый угол, после чего магнит остается в новом положении.

Регулирование движения на железной дороге

Движение плоского магнита включает сигнальный звонок или сирену. Далее происходит следующее. Через пару секунд кабина машиниста проходит над электромагнитом, который связан со светофором. Если тот дает поезду зеленую улицу, то электромагнит оказывается под напряжением и ось постоянного магнита в вагоне поворачивается в свое первоначальное положение, выключая сигнал в кабине. Когда же на светофоре горит красный или желтый свет, электромагнит бывает выключен, и тогда после некоторой задержки автоматически включается тормоз, если, конечно, это забыл сделать машинист. Тормозная цепь (как и звуковой сигнал) подключается к сети с момента поворота оси магнита. Если магнит во время задержки возвращается в первоначальное положение, то тормоз не включается.

Однако, оказалось, что катушка с током имеет и другие замечательные свойства. Чем из большего количества витков состоит катушка, тем сильнее становится магнитное поле. Это позволяет собирать магниты различной силы действия. Однако есть более простые способы воздействия на величину магнитного поля.

Так, при увеличении силы тока в проводах катушки возрастает сила магнитного поля, и, наоборот, при уменьшении силы тока, магнитное поле ослабевает. То есть, при элементарном подключении реостата, мы получаем регулируемый магнит.

Магнитное поле катушки с током можно значительно усилить, введя внутрь спирали железный стержень. Он называется сердечником. Применение сердечника позволяет создавать очень мощные магниты. Например, в производстве используют магниты, способные поднимать и удерживать несколько десятков тонн веса. Это достигается следующим образом.

Сердечник изгибают в виде дуги, а на два его конца надевают две катушки, по которым пускают ток. Катушки соединяют проводами 4е так, что их полюса совпадают. Сердечник усиливает их магнитное поле. Снизу к этой конструкции подводят пластину с крюком, на который подвешивают груз. Подобные устройства используют на заводах и в портах для того, чтобы перемещать грузы очень большого веса. Эти грузы легко подсоединяются и отсоединяются при включении и отключении тока в катушках.

Если проводник, по которому проходит электрический ток, внести в магнитное поле, то в результате взаимодействия магнитного поля и проводника с током проводник будет перемещаться в ту или иную сторону.
Направление перемещения проводника зависит от направления тока в нем и от направления магнитных линий поля.

Допустим, что в магнитном поле магнита NS находится проводник, расположенный перпендикулярно плоскости рисунка; по проводнику протекает ток в направлении от нас за плоскость рисунка.

Ток, идущий от плоскости рисунка к наблюдателю, обозначается условно точкой, а ток, направляющийся за плоскость рисунка от наблюдателя,- крестом.

Движение проводника с током в магнитном поле
1 - магнитное поле полюсов и тока проводника,
2 - результирующее магнитное поле.

Всегда всё уходящее на изображениях обозначается крестом,
а направленное на смотрящего - точкой.

Под действием тока вокруг проводника образуется свое магнитное поле рис.1 .
Применяя правило буравчика, легко убедиться, что в рассматриваемом нами случае направление магнитных линий этого поля совпадает с направлением движения часовой стрелки.

При взаимодействии магнитного поля магнита и поля, созданного током, образуется результирующее магнитное поле, изображенное на рис.2 .
Густота магнитных линий результирующего поля с обеих сторон проводника различна. Справа от проводника магнитные поля, имея одинаковое направление, складываются, а слева, будучи направленными встречно, частично взаимно уничтожаются.

Следовательно, на проводник будет действовать сила, большая справа и меньшая слева. Под действием большей силы проводник будет перемещаться по направлению силы F.

Перемена направления тока в проводнике изменит направление магнитных линий вокруг него, вследствие чего изменится и направление перемещения проводника.

Для определения направления движения проводника в магнитном поле можно пользоваться правилом левой руки, которое формулируется следующим образом:

Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника.

Сила, действующая на проводник с током в магнитном поле, зависит как от тока в проводнике, так и от интенсивности магнитного поля.

Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В . Единицей измерения магнитной индукции является тесла (Тл=Вс/м2 ).

О магнитной индукции можно судить по силе действия магнитного поля на проводник с током, помещенный в это поле. Если на проводник длиной 1 м и с током 1 А , расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н (ньютон), то магнитная индукция такого поля равна 1 Тл (тесла).

Магнитная индукция является векторной величиной, ее направление совпадает с направлением магнитных линий, причем в каждой точке поля вектор магнитной индукции направлен по касательной к магнитной линии.

Сила F , действующая на проводник с током в магнитном поле, пропорциональна магнитной индукции В , току в проводнике I и длине проводника l , т. е.
F=BIl .

Эта формула верна лишь в том случае, когда проводник с током расположен перпендикулярно магнитным линиям равномерного магнитного поля.
Если проводник с током находится в магнитном поле под каким-либо углом а по отношению к магнитным линиям, то сила равна:
F=BIl sin a .
Если проводник расположить вдоль магнитных линий, то сила F станет равной нулю, так кака=0 .

Электромагнитная индукция


Представим себе два параллельных проводника аб и вг , расположенных на близком расстоянии один от другого. Проводник аб подключен к зажимам батареи Б ; цепь включается ключомК , при замыкании которого по проводнику проходит ток в направлении от а к б . К концам же проводника вг присоединен чувствительный амперметрА , по отклонению стрелки которого судят о наличии тока в этом проводнике.

Если в собранной таким образом схеме замкнуть ключ К , то в момент замыкания цепи стрелка амперметра отклонится, свидетельствуя о наличии тока в проводнике вг ;
по прошествии же небольшого промежутка времени (долей секунды) стрелка амперметра придет в исходное (нулевое) положение.

Размыкание ключа К опять вызовет кратковременное отклонение стрелки амперметра, но уже в другую сторону, что будет указывать на возникновение тока противоположного направления.
Подобное отклонение стрелки амперметра А можно наблюдать и в том случае, если, замкнув ключ К , приближать проводник аб к проводнику вг или удалять от него.

Приближение проводника аб к вг вызовет отклонение стрелки амперметра в ту же сорону, что и при замыкании ключа К , удаление проводника аб от проводника вг повлечет за собой отклонение стрелки амперметра, аналогичное отклонению при размыкании ключа К .

При неподвижных проводниках и замкнутом ключе К ток в проводнике вг можно вызвать изменением величины тока в проводнике аб .
Аналогичные явления происходят и в том случае, если проводник, питаемый током, заменить магнитом или электромагнитом.

Так, например, на рисунке схематически изображена катушка (соленоид) из изолированной проволоки, к концам которой подключен амперметр А .

Если внутрь обмотки быстро ввести постоянный магнит (или электромагнит), то в момент его введения стрелка амперметра А отклонится; при выведении магнита будет также наблюдаться отклонение стрелки амперметра, но в другую сторону.

Электрические токи, возникающие при подобных обстоятельствах, называются индукционными, а причина, вызывающая появление индукционных токов, электродвижущей силой индукции.

Эта эдс возникает в проводниках под действием изменяющихся магнитных полей,
в которых находятся эти проводники.
Направление эдс индукции в проводнике, перемещающемся в магнитном поле, может быть определено по правилу правой руки, которое формулируется так.

Наибольший практический интерес представляет собой магнитное поле катушки с током. На рисунке 97 изображена катушка, состоящая из большого числа витков провода, намотанного на деревянный каркас. Когда в катушке есть ток, железные опилки притягиваются к её концам, при отключении тока они отпадают.

Рис. 97. Притяжение железных опилок катушкой с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой - к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса - северный и южный (рис. 98).

Рис. 98. Полюсы катушки с током

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого тока, можно обнаружить при помощи опилок (рис. 99). Магнитные линии магнитного поля катушки с током являются также замкнутыми кривыми. Принято считать, что вне катушки они направлены от северного полюса катушки к южному (см. рис. 99).

Рис. 99. Магнитные линии катушки с током

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять (усиливать или ослаблять) в широких пределах. Рассмотрим способы, при помощи которых можно это делать.

На рисунке 97 изображён опыт, в котором наблюдается действие магнитного поля катушки с током. Если заменить катушку другой, с большим числом витков проволоки, то при той же силе тока она притянет больше железных предметов. Значит, магнитное действие катушки с током тем сильнее, чем больше число витков в ней .

Включим в цепь, содержащую катушку, реостат (рис. 100) и при помощи него будем изменять силу тока в катушке. При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении - ослабляется .

Рис. 100. Действие магнитного поля катушки

Оказывается также, что магнитное действие катушки с током можно значительно усилить, не меняя число её витков и силу тока в ней. Для этого надо ввести внутрь катушки железный стержень (сердечник). Железо, введённое внутрь катушки, усиливает магнитное действие катушки (рис. 101).

Рис. 101. Действие магнитного поля катушки с железным сердечником

    Катушка с железным сердечником внутри называется электромагнитом .

Электромагнит - одна из основных деталей многих технических приборов. На рисунке 102 изображён дугообразный электромагнит, удерживающий якорь (железную пластинку) с подвешенным грузом.

Рис. 102. Дугообразный электромагнит

Электромагниты широко применяют в технике благодаря их замечательным свойствам. Они быстро размагничиваются при выключении тока, в зависимости от назначения их можно изготавливать самых различных размеров, во время работы электромагнита можно регулировать его магнитное действие, меняя силу тока в катушке.

Электромагниты, обладающие большой подъёмной силой, используют на заводах для переноски изделий из стали или чугуна, а также стальных и чугунных стружек, слитков (рис. 103).

Рис. 103. Применение электромагнитов

На рисунке 104 показан в разрезе магнитный сепаратор для зерна. В зерно подмешивают очень мелкие железные опилки. Эти опилки не прилипают к гладким зёрнам полезных злаков, но прилипают к зёрнам сорняков. Зёрна 1 высыпаются из бункера на вращающийся барабан 2. Внутри барабана находится сильный электромагнит 5. Притягивая железные частицы 4, он извлекает зёрна сорняков из потока зерна 3 и таким путём очищает зерно от сорняков и случайно попавших железных предметов.

Рис. 104. Магнитный сепаратор

Применяются электромагниты в телеграфном, телефонном аппаратах и во многих других устройствах.

Вопросы

  1. В каком направлении устанавливается катушка с током, подвешенная на длинных тонких проводниках? Какое сходство имеется у неё с магнитной стрелкой?
  2. Какими способами можно усилить магнитное действие катушки с током?
  3. Что называют электромагнитом?
  4. Для каких целей используют на заводах электромагниты?
  5. Как устроен магнитный сепаратор для зерна?

Упражнение 41

  1. Нужно построить электромагнит, подъёмную силу которого можно регулировать, не изменяя конструкции. Как это сделать?
  2. Что надо сделать, чтобы изменить магнитные полюсы катушки с током на противоположные?
  3. Как построить сильный электромагнит, если конструктору дано условие, чтобы ток в электромагните был сравнительно малым?
  4. Используемые в подъёмном кране электромагниты обладают громадной мощностью. Электромагниты, при помощи которых удаляют из глаз случайно попавшие железные опилки, очень слабы. Какими способами достигают такого различия?

Задание

Движущийся электрический заряд создает в окружающем пространстве магнитное поле. Поток электронов, проходящих по проводнику создают магнитное поле вокруг проводника. Если металлический провод намотать кольцами на какой-нибудь стержень, то получится катушка. Оказывается магнитное поле, создаваемое такой катушкой, обладает интересными и, самое главное, полезными свойствами.

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

  • Магнитное поле возникает только в результате движения электрических зарядов;
  • Постоянное магнитное поле существует у природных магнитных тел, но и в этом случае причиной возникновения поля является непрерывное движение молекулярных токов (вихрей) в массе вещества;
  • Магнитное поле можно создать еще с помощью переменного электрического поля, но это тема будет рассмотрена в следующих наших статьях.

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

Рис. 2. Магнитное поле катушки и постоянного магнита.

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

  • Катушка индуктивности, или просто — индуктивность . Термин используется в радиотехнике;
  • Дроссель (drossel — регулятор, ограничитель). Используется в электротехнике;
  • Соленоид . Это составное слово происходит от двух греческих слов: solen — канал, труба и eidos — подобный). Так называют специальные катушки с сердечниками из специальных магнитных сплавов (ферромагнетиков), которые используют в качестве электромеханических механизмов. Например, в автомобильных стартерах втягивающее реле — это соленоид.

Рис. 3. Катушки индуктивности, дроссель, соленоид

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

$$ W = {{ L*I^2}\over 2 } $$

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

$$ L = μ *{{N^2*S}\over l_к} $$

N — число витков катушки;

S — площадь поперечного сечения катушки;

l к — длина катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Что мы узнали?

Итак, мы узнали, что магнитное поле возникает только в результате движения электрических зарядов. Магнитное поле катушки с током похоже на магнитное поле постоянного магнита. Энергию магнитного поля катушки можно рассчитать, зная силу тока I и индуктивность L.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 52.