ОТВЕТ: Клетка является элементарной структурной, функциональной и генетической единицей живого. Клетка – элементарная единица развития живого. Клетка способна к саморегуляции, самообновлению и самовоспроизведению.

12. Общая масса митохондрий по отношению к массе клеток различных органов крысы составляет: в поджелудочной железе – 7,9%, в печени – 18,4%, в сердце – 35,8%. Почему в клетках этих органов различное содержание митохондрий?

ОТВЕТ: Митохондрии являются энергетическими станциями клетки - в них синтезируются молекулы АТФ. Для работы сердечной мышцы нужно много энергии, поэтому в ее клетках наибольшее количество митохондрий. В печени больше, чем в поджелудочной железе, потому что в ней более интенсивный обмен веществ.

Как используется аккумулированная в АТФ энергия?

ОТВЕТ : АТФ является универсальным источником энергии в клетках всех живых организмов. Энергия АТФ тратится на синтез и транспорт веществ, на размножение клетки, на сокращение мышц, на проведение импульсов, т.е. на жизнедеятельность клеток, тканей, органов и всего организма.

Какие свойства ДНК подтверждают, что она является носителем генетической информации?

ОТВЕТ : Способность к репликации (самоудвоению), комплементарность двух цепей, способность к транскрипции.

Опишите молекулярное строение наружной плазматической мембраны животных клеток.

ОТВЕТ : Плазматическая мембрана образована двумя слоями липидов. Молекулы белков могут пронизывать плазматическую мембрану или располагаться на ее внешней или внутренней поверхности. Снаружи к белкам могут присоединяться углеводы, образуя гликокалис.

По каким признакам живые организмы отличаются от тел неживой природы?

ОТВЕТ: Признаки живого: обмен веществ и превращение энергии, наследственность и изменчивость, приспособленность к условиям обитания, раздражимость, размножение, рост и развитие, саморегуляция и т.д.

Какие признаки характерны для вирусов?

Какое значение для формирования научного мировоззрения имело создание клеточной теории?

ОТВЕТ: Клеточная теория обосновала родство живых организмов, их общность происхождения, обобщила знания о клетке, как о единице строения и жизнедеятельности живых организмов.

Чем молекула ДНК отличается от и-РНК?

ОТВЕТ : ДНК имеет структуру в виде двойной спирали, а РНК – одинарную цепь нуклеотидов; ДНК имеет в составе сахар дезоксорибозу и нуклеотиды с азотистым основанием тимин, а РНК – сахар рибозу и нуклеотиды с азотистым основанием урацил.

Почему бактерии нельзя отнести к эукариотам?

ОТВЕТ: Они не имеют обособленного от цитоплазмы ядра, митохондрий, комплекса Гольджи, ЭПС, для них не характерен митоз и мейоз, оплодотворение. Наследственная информация в виде кольцевой молекулы ДНК.

Обмен веществ и энергии

В каких реакциях обмена исходным веществом для синтеза углеводов является вода?

ОТВЕТ: Фотосинтеза.

Энергию какого типа потребляют гетеротрофные живые организмы?

ОТВЕТ: Энергию окисления органических веществ.

Энергию какого типа потребляют автотрофные организмы?

ОТВЕТ: Фототрофы – энергию света, хемотрофы – энергию окисления неорганических веществ.

В какую фазу фотосинтеза происходит синтез АТФ?

ОТВЕТ: Всветовой фазе.

Какое вещество служит источником кислорода во время фотосинтеза?

ОТВЕТ: Вода (в результате фотолиза – распада под действием света в световой фазе, происходит выделение кислорода).

Почему гетеротрофные организмы сами не могут создавать органические вещества?

ОТВЕТ: В их клетках нет хлоропластов и хлорофилла.

Поступающая в организм человека пища претерпевает сложные химические превращения, т.е. частично подвергается окислению или анаэробному распаду. При анаэробном распаде освобождается химическая энергия, необходимая для движения, а также для синтеза необходимых для организма веществ.

Обмен веществ (метаболизм) в живых организмах состоит из двух связанных между собой процессов:

  • анаболизма
  • катаболизма

Анаболизм или ассимиляция – синтез из простых более сложных соединений на основе поступающих в организм из внешней среды веществ.

Например, органические вещества в зеленых растениях образуются в результате фотосинтеза из углекислого газа и воды.

Катаболизм или диссимиляция – процесс, обратный анаболизму. При катаболизме происходит разложение сложных соединений на более простые, которые затем выделяются как конечные продукты в окружающую среду.

При катаболизме основным источником углеводов являются углеводы, которые расщепляются гидролитическими ферментами. Если у растений при прорастании семян крахмал подвергается гидролизу ферментом амилазой, с образованием дисахарида мальтозы, то у животных под действием амилазы слюны и поджелудочной железы, образуя мальтозу. Далее мальтоза под действием фермента мальтазы переходит в глюкозу, которая в результате брожения, гликолиза и дыхания в конечном итоге расщепляется до углекислоты и воды. Энергия, выделяемая при этих процессах, аккумулируется в организме. Установлено, что при сгорании одного грамма углеводов выделяется 4,1 ккал (17,22 кДж).

Катаболизм жиров и белков также начинается с их гидролитического расщепления под влиянием специфических ферментов, с образованием в первом случае свободных жирных кислот и глицерина, во втором – низкомолекулярных пептидов и аминокислот.

Метаболизм или обмен веществ можно разделить на три этапа:

  • Первый- это пищеварение, который заключается в механической и химической обработке пищи в пищеварительных органах и всасывание питательных веществ.
  • Второй этап это – промежуточный обмен, который включает процессы распада и синтеза веществ. Этот процесс сопровождается образованием промежуточных и конечных продуктов обмена. Например, глюкоза прежде чем превратиться в конечные продукты обмена СО2 и Н2О, претерпевает ряд промежуточных превращений.
  • Третий этап – выделение продуктов метаболизма из организма с выдыхаемым воздухом, мочой и т.д. Вещества, влияющие на течение реакции обмена веществ называют метаболитами. К ним относятся аминокислоты, жирные кислоты, сахара, азотистые основания и другие соединения.

Метаболизм или обмен веществ неразрывно связан с превращением энергии. Живой организм постоянно нуждается в поступлении энергии из внешней среды. Было установлено, что при фотосинтезе, т.е. преобразовании энергии солнечного света, последняя запасается в виде потенциальной химической энергии в органических веществах. Потенциальная химическая энергия, которая образуется в результате распада углеводов, жиров и других высокомолекулярных соединений накапливается или аккумулируется в макроэргических соединениях.

В процессах обмена энергия выделяется следующим образом. Вначале высокомолекулярные вещества гидролитически распадаются на низкомолекулярные; например, полисахариды – до моносахаридов; белки – до аминокислот; жиры – до жирных кислот и глицерина. При этом энергия, выделяющаяся при гидролитическом распаде этих веществ очень незначительна. Далее происходит выделение большого количества энергии в процессе гликолиза, окисления жирных кислот, аминокислот. Из продуктов гидролиза основное энергетическое значение имеют три: ацетилкоэнзим А, В -кетоглутаровая кислота и щавелево-уксусная кислота. Эти вещества подвергаются окислению через цикл ди-трикарбоновых кислот (цикл Кребса). Около 2/3 энергии освобождается в цикле Кребса.

АТФ улавливает и накапливает энергию, освобождающуюся при распаде высокомолекулярных органических соединений в организме. Одновременно в клетке идет синтез АТФ и аккумуляция энергии в ее фосфорных связях. При синтезе белков, а также при функционировании органов и мышц сопряжено идет распад АТФ по месту макроэргических связей с выделением энергии. Образовавшаяся энергия служит источником для синтеза, а также для двигательных процессов.

Из вышесказанного следует, что АТФ является связующим звеном между двумя противоположными процессами, где она при распаде веществ аккумулирует энергию, а при ассимиляции ее отдает.

Биологическую роль АТФ в энергетике обмена можно представить на примере работающего сердца. При взаимодействии с сократительными белками мышц АТФ обеспечивает энергию, необходимую для сокращения сердца и проталкивания крови в кровеносную систему. При этом для бесперебойной работы сердца необходимо постоянное пополнение количества АТФ. Если сердце не получит необходимого количества питательного материала и «горючего» (углеводы и продукты их распада), а также кислорода, необходимого для образования АТФ, то в этом случае наступает нарушение работы сердца.

Необходимое количество АТФ для функционирования различных органов вырабатывается в клеточных организмах – метохондриях в процессе окислительного фосфорилирования.


ОСНОВНЫЕ ПРОЦЕССЫ, ДЛЯ КОТОРЫХ ИСПОЛЬЗУЕТСЯ ЭНЕРГИЯ АТФ:

1. Синтез различных веществ.

2. Активный транспорт (транспорт веществ через мембрану против градиента их концентраций). 30% от общего количества расходуемого АТФ приходится на Na + ,К + -АТФазу.

3. Механическое движение (мышечная работа).

СИНТЕЗ АТФ.

Во внутренней мембране митохондрий расположен интегральный белковый комплекс – Н + -зависимая АТФ-синтаза seu Н + -зависимая АТФ-аза (два разных названия связаны с полной обратимостью катализируемой реакции), обладающий значительной молекулярной массой – более, чем 500кДа. Состоит из двух субъединиц: F O и F 1 .

F 1 представляет из себя грибовидный вырост на матриксной поверхности внутренней митохондриальной мембраны, F O же пронизывает эту мембрану насквозь. В толще F O расположен протонный канал, позволяющий протонам возвращаться обратно в матрикс по градиенту их концентраций.

F 1 способна связывать АДФ и фосфат на своей поверхности с образованием АТФ - без затраты энергии, но обязательно в комплексе с ферментом. Энергия необходима лишь для освобождения АТФ из этого комплекса. Эта энергия выделяется в результате тока протонов через протонный канал F O .

В дыхательной цепи сопряжение абсолютно : ни одно вещество не может окисляться без восстановления другого вещества.

Но при синтезе АТФ сопряжение одностороннее: окисление может идти без фосфорилирования, а фосфорилирование без окисления никогда не идёт. Это означает, что система МтО может работать без синтеза АТФ, но АТФ не может быть синтезирована, если не работает система МтО.

СПЕЦИФИЧЕСКИЕ ИНГИБИТОРЫ ТКАНЕВОГО ДЫХАНИЯ

К ним относятся вещества, прекращающие работу того или иного комплекса дыхательной цепи.

Ингибитором комплекса I является яд растительного происхождения ротенон. Некоторые народности раньше использовали его в рыбной ловле.

Ингибиторами комплекса IV являются цианиды, угарный газ СО, сероводород H 2 S.

ВЕЩЕСТВА-РАЗОБЩИТЕЛИ ПРОЦЕССОВ ОКИСЛЕНИЯ И ФОСФОРИЛИРОВАНИЯ

Они не прекращают процессов окисления, но снижают синтез АТФ. Дыхательная цепь работает, а АТФ при этом синтезируется в меньшем количестве, чем в норме. Тогда энергия, получаемая при переносе электронов по цепи МтО, выделяется в виде тепла. Такое состояние, когда происходит окисление субстратов, а фосфорилирование (образование АТФ из АДФ и Ф) не идет, называется разобщением окисления и фосфорилирования. К такому состоянию может приводить действие веществ-разобщителей:

2,4-динитрофенол, открытый в 1944 году Липманом, при введении в организм повышает температуру тела и понижает синтез АТФ. Это вещество, наряду с другими, открытыми позже, пытались использовать для лечения ожирения, но безуспешно.

Механизм действия веществ-разобщителей становится понятням только с точки зрения хемиоосмотической теории.

Разобщители являются слабыми кислотами, растворимыми в жирах. В межмембранном пространстве они связывают протоны, и затем диффундируют в матрикс, тем самым снижая DmH + .

Подобным действием обладает и йодсодержащие гормоны щитовидной железы – тироксин и трийодтиронин.При состояниях, сопровождающихся гиперфункцией щитовидной железы (например, Базедова болезнь), больным не хватает энергии АТФ: они много едят (нужно большое количество субстратов для окисления), но при этом теряют в весе. Большая часть энергии выделяется в виде тепла.

Схема цепи митохондриального окисления не раскрывает механизма образования АТФ путем окислительного фософорилирования. Этот механизм объясняется гипотезой П.Митчелла.

ТЕОРИЯ СОПРЯЖЕНИЯ ОКИСЛЕНИЯ И ФОСФОРИЛИРОВАНИЯ ПИТЕРА МИТЧЕЛЛА.

Известно, что через мембрану митохондрии могут свободно проникать только небольшие незаряженные молекулы, а также гидрофобные молекулы. Энергия, которая выделяется при переносе электронов по цепи МтО, приводит к переносу протонов (Н +) из матрикса митохондрии в межмембранное пространство. Поэтому на внутренней мембране митохондрий образуется градиент концентраций протонов: в межмембранном пространстве Н + становится много, а в матриксе остается мало. Образуется разность потенциалов 0.14V - наружная часть мембраны заряжена положительно, а внутренняя - отрицательно. Накопившиеся в межмембранном пространстве Н + стремятся выйти обратно в матрикс по градиенту их концентраций, но митохондриальная мембрана для них непроницаема. Единственный обратный путь в матрикс для протонов - через протонный канал фермента АТФ-синтетазы, которая встроена (built-in) во внутреннюю мембрану митохондрий. При движении протонов по этому каналу в матрикс их энергия используется АТФ-синтазой для синтеза АТФ. Синтезируется АТФ в матриксе митохондрий.

После синтеза АТФ переносится в цитоплазму путем облегчённой диффузии по градиенту концентраций, поскольку основные процессы, в которых АТФ потребляется, протекают в цитоплазме.

Как происходит транспорт АТФ из митохондрий в цитоплазму?

Для этого используется специфический для АТФ транспортный белок - АТФ/АДФ-транслоказа. Это интегральный белок, локализован во внутренней мембране митохондрий.

Во внутренней мембране митохондрий есть белок-переносчик - АТФ/АТФ-транслоказа, который имеет 2 центра связывания: со стороны матрикса для АТФ, снаружи - для АДФ. При изменении конформации АТФ/АДФ-транслоказы АДФ переносится в матрикс, а АТФ - в межмембранное пространство, а затем - в цитоплазму, где используется.

Для образования АТФ в матрикс всё время должен поступать неорганический фосфат (Ф). Для этого во внутренней мембране митохондрий есть транспортная система, которая обеспечивает перенос фосфата в матрикс сопряженно с переносом Н + . Это белок-переносчик, который имеет 2 центра связывания: для Ф и Н + . Ф и Н + вместе переносятся из межмембранного пространства в матрикс.

Известны некоторые вещества, которые способны разобщать процессы окисления и фосфорилирования, приводя тем самым к уменьшению коэффициента р/о. К ним относятся йодсодержащие гормоны щитовидной железы (тироксин, трийодтиронин), а также некоторые ксенобиотики (например, 2,4-динитрофенол). Такие вещества известны под общим названием «РАЗОБЩАЮЩИЕ ЯДЫ». Как действуют вещества-разобщители окисления и фосфорилирования? Они могут образовывать собственные протонные каналы во внутренней мембране митохондрий. Поэтому часть протонов, вместо того, чтобы идти обратно в матрикс по протонному каналу АТФ-синтетазы, уходит туда по каналам веществ-разобщителей. В результате АТФ образуется меньше, и часть энергии выделяется в виде тепла.

АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ СИСТЕМЫ МИТОХОНДРИАЛЬНОГО ОКИСЛЕНИЯ

Если клетка организма находится в условиях покоя, то АТФ мало используется и накапливается. Поэтому снижается концентрация АДФ и Ф. В этих условиях АТФ-синтетаза уже не получает из цитоплазмы достаточно фосфата и АДФ для синтеза АТФ. Её активность понижается, и скорость движения протонов из межмембранного пространства в матрикс по протонному каналу этого фермента тоже падает. Поэтому сохраняется высокий градиент концентраций протонов на внутренней мембране митохондрий. В этих условиях энергии переноса водорода по цепи митохондриального окисления уже не хватает для выталкивания Н + из матрикса в межмембранное пространство. Перенос водорода по цепи МтО тормозится и прекращается окисление субстратов.

Метаболизм в клетке регулируется отношением АТФ/АДФ. Это отношение характеризует энергетический заряд клетки.

В норме ЭЗК = 0.85-0.90. Может изменяться от 0 до 1. Высокий ЭЗК тормозит синтез АТФ, и активирует использование АТФ (АТФ-------> АДФ + Ф)

БИОЛОГИЧЕСКАЯ РОЛЬ МИТОХОНДРИАЛЬНОГО ОКИСЛЕНИЯ

Главная его функция - обеспечение организма запасами энергии в форме АТФ.

Именно митохондрии поставляют клетке бо льшую часть необходимого ей АТФ.

В сутки синтезируется до 62 кг АТФ, хотя одновременно в организме никогда не бывает больше 30-40 граммов этого вещества. Т.е. наблюдается очень быстрое восстановление расходуемых молекул АТФ.



Движение любого сочленения осуществляется благодаря сокращениям скелетных мышц. На следующей диаграмме представлен метаболизм энергии в мышце.

Сократительная функция всех типов мышц обусловлена превращением в мышечных волокнах химической энергии определённых биохимических процессов в механическую работу. Гидролиз аденозинтрифосфата (АТФ) как раз иобеспечивает мышцу этой энергией.

Поскольку снабжение мускулатуры АТФ невелико, необходимо активировать метаболические пути к ресинтезу АТФ , чтобы уровень синтеза соответствовал затратам на сокращение мышц. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (без использования кислорода) и аэробным путем. АТФ синтезируется из аденозиндифосфата (АДФ ) посредством энергии креатинфосфата, анаэробного гликолиза или окислительного метаболизма. Запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы.

Креатинфосфат

Запасы креатинфосфата (КрФ ) в мышце побольше запасов АТФ и они анаэробномогут быть быстро превращены в АТФ . КрФ – самая «быстрая» энергии в мышцах (она обеспечивает энергию в первые 5-10 секунд очень мощной, взрывной работы силового характера, например, при подъеме штанги). После исчерпания запасов КрФ организм переходит к расщеплению мышечного гликогена, обеспечивающего более продолжительную (до 2-3 минут), но менее интенсивную (в три раза) работу.

Гликолиз

Гликолиз - форма анаэробного метаболизма, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты.

КрФ считаетсятопливом быстрой реализации, которыйрегенерирует АТФ , которогов мышцах незначительное количество и поэтомуКрФ является основным энергетиком в течение нескольких секунд. Гликолиз более сложная система, способная функционироватьдлительное время, поэтому ее значение существенно для более длительных активных действий. КрФ ограничен своим незначительным количеством. Гликолиз же имеет возможность для относительно длительного энергетического обеспечения, но, производя молочную кислоту,заполняет ею двигательные клетки ииз-заэтого ограничивает мышечную активность.

Окислительный метаболизм

Связан с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Для пополнения срочных и кратковременных энергетических запасов и выполнения длительной работы мышечная клетка использует так называемые долговременные источники энергии. К ним относятся глюкоза и другие моносахара, аминокислоты, жирные кислоты, глицеролкомпоненты продуктов питания, доставляемые в мышечную клетку через капиллярную сеть и участвующие в окислительном метаболизме. Эти источники энергии генерируют образование АТФ путем сочетания утилизации кислорода с окислением носителей водорода в электронтранспортной системе митохондрии.

В процесс полного окисления одной молекулы глюкозы синтезируется 38 молекул АТФ . При сопоставлении анаэробного гликолиза с аэробным расщеплением углеводов можно заметить, что аэробный процесс в 19 раз эффективнее.

Во время выполнения кратковременных интенсивных физических нагрузок в качестве основных источников энергии используются КрФ , гликоген и глюкоза скелетных мышц. В этих условиях главным фактором, лимитирующим образование АТФ , можно считать отсутствие необходимого количества кислорода. Интенсивный гликолиз приводит к накоплению в скелетных мышцах больших количеств молочной кислоты, которая постепенно диффундирует в кровь и переносится в печень. Высокие концентрации молочной кислоты становятся важным фактором регуляторного механизма, ингибирующего обмен свободных жирных кислот во время физических нагрузок длительностью 30-40 с.

По мере увеличения длительности физических нагрузок происходит постепенное снижение концентрации инсулина в крови. Этот гормон активно участвует в регуляции жирового обмена и при высоких концентрациях тормозит активность липаз. Снижение концентрации инсулина во время длительных физических нагрузок приводит к повышению активности инсулин зависимых ферментных систем, что проявляется в усилении процесса липолиза и увеличении освобождения жирных кислот из депо.

Важность этого регуляторного механизма становится очевидной, когда спортсмены допускают наиболее распространенную ошибку. Нередко, стараясь обеспечить организм легкоусвояемыми источниками энергии, за час до начала соревнований или тренировок они принимают богатую углеводами пищу или концентрированный, содержащий глюкозу, напиток. Такое насыщение организма легкоусвояемыми углеводами приводит через 15-20 минут к повышению уровня глюкозы в крови, а это, в свою очередь, вызывает усиленное выделение инсулина клетками поджелудочной железы. Повышение концентрации этого гормона в крови приводит к усилению потребления глюкозы в качестве источника энергии для мышечной деятельности. В конечном счете, вместо энергетически более выгодных жирных кислот в организме расходуются углеводы. Так, прием глюкозы за час до старта может существенно повлиять на спортивную работоспособность и снизить выносливость к длительной нагрузке.

Активное участие свободных жирных кислот в энергетическом обеспечении мышечной деятельности позволяет более экономно выполнять длительные физические на грузки. Усиление процесса липолиза во время физических нагрузок приводит к освобождению жирных кислот из жировых депо в кровь, и они могут быть доставлены в скелетные мышцы или использованы для образования липопротеинов крови. В скелетных мышцах свободные жирные кислоты проникают в митохондрии, где подвергаются последовательному окислению, сопряженному с фосфорилированием и синтезом АТФ .

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (табл. 1).

Таблица 1. Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности

Критерии мощности

Максимальная энергетическая емкость, кДж/кГ

Метаболический процесс

Максимальная мощность, кДж/кГмин

Время достижения макс. мощи. физической работы, с

Время удержания работоспособности на уровне макс. мощн., с

Алактатный анаэробный

3770

Гликолитический -анаэробный

2500

15-20

90-250

1050

Аэробный

1250

90-180

340-600

Не ограничена

Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Важное значение имеет соотношение аэробной и анаэробной энергопродукции при выполнении работы разной интенсивности. На примере беговых дистанций из легкой атлетики можно представить это соотношение (табл.2)

Таблица 2. Относительный вклад механизмов аэробной и анаэробной энергопродукции при выполнении с максимальной интенсивностью однократной работы различной продолжительности

Зоны энергообеспечения

Продолжительность работы

Доля энергопродукции

(в %)

время, мин

Дистанция, м

Аэробная

Анаэробная

Анаэробная

10-13"

20-25"

45-60"

1,5-2,0"

Смешанная аэробно-анаэробная

2,5-3"

1000

4,0-6,0"

1500

8,0-13,0"

3000-5000

Аэробная

12,0-20,0"

5000

24,0-45,0"

10000

Более 1,5 час

30000-42195

ОТВЕТ: Клетка является системой, т.к. состоит из множества взаимосвязанных и взаимодействующих частей – органоидов и др. структур. Эта система является открытой, т.к. в нее поступают из окружающей среды вещества и энергия, в ней осуществляется обмен веществ. В клетке поддерживается относительно постоянный состав благодаря саморегуляции, осуществляемой на генетическом уровне. Клетка способна реагировать на раздражители.

9. Что такое метод исследования? Приведите примеры биологических методов исследования и ситуации, в которых они применяются.

ОТВЕТ: Метод – это способ научного познания действительности. Различают биологические методы исследования: описание, наблюдение, сравнение, эксперимент, микроскопия, центрифугирование, гибридологический, близнецовый метод, биохимический метод и др. Методы исследования применяются только в определенных случаях и для достижения определенных целей. Например, гибридологический – для изучения наследственности применяется в животноводстве и растениеводстве, но не применяется для человека. Центрифугирование позволяет выделять органоиды клетки для их изучения.

10. Какова роль ядра в клетке?

ОТВЕТ: Ядро клетки содержит хромосомы, несущие наследственную информацию и контролирует процессы обмена веществ и размножения клетки.

11. Как в настоящее время формулируется клеточная теория?

ОТВЕТ: Клетка является элементарной структурной, функциональной и генетической единицей живого. Клетка – элементарная единица развития живого. Клетка способна к саморегуляции, самообновлению и самовоспроизведению.

12. Общая масса митохондрий по отношению к массе клеток различных органов крысы составляет: в поджелудочной железе – 7,9%, в печени – 18,4%, в сердце – 35,8%. Почему в клетках этих органов различное содержание митохондрий?

ОТВЕТ: Митохондрии являются энергетическими станциями клетки - в них синтезируются молекулы АТФ. Для работы сердечной мышцы нужно много энергии, поэтому в ее клетках наибольшее количество митохондрий. В печени больше, чем в поджелудочной железе, потому что в ней более интенсивный обмен веществ.

13. Как используется аккумулированная в АТФ энергия?

ОТВЕТ : АТФ является универсальным источником энергии в клетках всех живых организмов. Энергия АТФ тратится на синтез и транспорт веществ, на размножение клетки, на сокращение мышц, на проведение импульсов, т.е. на жизнедеятельность клеток, тканей, органов и всего организма.

14. Какие свойства ДНК подтверждают, что она является носителем генетической информации?

ОТВЕТ : Способность к репликации (самоудвоению), комплементарность двух цепей, способность к транскрипции.