Принцип Даламбера позволяет сформулировать задачи динамики механических систем как задачи статики. При этом динамическим дифференциальным уравнениям движения придают вид уравнений равновесия. Такой метод называют методом кинетостатики .

Принцип Даламбера для материальной точки: «В каждый момент времени движения материальной точки, фактически действующие на нее активные силы, реакции связей и условно приложенная к точке сила инерции образуют уравновешенную систему сил »

Силой инерции точки называют векторную величину, имеющую размерность силы, равную по модулю произведению массы точки на ее ускорение и направленную противоположно вектору ускорения

. (3.38)

Рассматривая механическую систему как совокупность материальных точек, на каждую из которых действуют, согласно принципу Даламбера, уравновешенные системы сил, имеем следствия из этого принципа применительно к системе. Главный вектор и главный момент относительно любого центра приложенных к системе внешних сил и сил инерции всех ее точек равны нулю:

(3.39)

Здесь внешними силами являются активные силы и реакции связей.

Главный вектор сил инерции механической системы равен произведению массы системы на ускорение ее центра масс и направлен в сторону, противоположную этому ускорению

. (3.40)

Главный момент сил инерции системы относительно произвольного центра О равен взятой с обратным знаком производной по времени от кинетического момента ее относительно того же центра

. (3.41)

Для твердого тела, вращающегося вокруг неподвижной оси Oz , найдем главный момент сил инерции относительно этой оси

. (3.42)

3.8. Элементы аналитической механики

В разделе «Аналитическая механика» рассматривают общие принципы и аналитические методы решения задач механики материальных систем.

3.8.1.Возможные перемещения системы. Классификация

некоторых связей

Возможными перемещениями точек
механической системы называют любые воображаемые, бесконечно малые их перемещения, допускаемые наложенными на систему связями, в фиксированный момент времени. По определению, числом степеней свободы механической системы называют число ее независимых возможных перемещений.

Связи, наложенные на систему, называют идеальными , если сумма элементарных работ их реакций на любом из возможных перемещений точек системы равна нулю

. (3. 43)

Связи, для которых налагаемые ими ограничения сохраняются при любом положении системы, называют удерживающими . Связи, не изменяющиеся во времени, в уравнения которых явно не входит время, называют стационарными . Связи, ограничивающие только перемещения точек системы, называют геометрическими , а ограничивающие скорости – кинематическими . В дальнейшем будем рассматривать только геометрические связи и те кинематические, которые могут быть путем интегрирования сведены к геометрическим.

3.8.2. Принцип возможных перемещений

Для равновесия механической системы с удерживающими идеальными и стационарными связями необходимо и достаточно, чтобы

сумма элементарных работ всех активных сил, действующих на нее, на любых возможных перемещениях системы была равна нулю

. (3.44)

В проекциях на оси координат:

. (3.45)

Принцип возможных перемещений позволяет установить в общей форме условия равновесия любой механической системы, не рассматривая равновесие отдельных ее частей. При этом учитываются только действующие на систему активные силы. Неизвестные реакции идеальных связей в эти условия не входят. Вместе с тем данный принцип позволяет определять неизвестные реакции идеальных связей путем отбрасывания этих связей и введения их реакций в число активных сил. При отбрасывании связей, реакции которых необходимо определить, система приобретает дополнительно соответствующее число степеней свободы.

Пример 1 . Найти зависимость между силами идомкрата, если известно, что при каждом повороте рукояткиАВ = l , винт С выдвигается на величину h (рис. 3.3).

Решение

Возможные перемещения механизма – это поворот рукоятки  и перемещение груза h . Условие равенства нулю элементарных работ сил:

Pl  – Q h = 0;

Тогда
. Так какh 0, то

3.8.3. Общее вариационное уравнение динамики

Рассмотрим движение системы, состоящей из n точек. На нее действуют активные силы и реакции связей .(k = 1,…,n ) Если к действующим силам добавить силы инерции точек
, то, согласно принципу Даламбера, полученная система сил будет находиться в равновесии и, следовательно, справедливо выражение, записанное на основе принципа возможных перемещений (3.44):


. (3.46)

Если все связи идеальные, то 2-я сумма равна нулю и в проекциях на оси координат равенство (3.46) будет выглядеть следующим образом:

Последнее равенство представляет собой общее вариационное уравнение динамики в проекциях на оси координат, которое позволяет составить дифференциальные уравнения движения механической системы.

Общее вариационное уравнение динамики – это математическое выражение принципа Даламбера-Лагранжа : «При движении системы, подчиненной стационарным, идеальным, удерживающим связям, в каждый данный момент времени сумма элементарных работ всех активных сил, приложенных к системе, и сил инерции на любом возможном перемещении системы равна нулю ».

Пример 2 . Для механической системы (рис. 3.4), состоящей из трех тел определить ускорение груза 1 и натяжение троса 1-2, если: m 1 = 5m ; m 2 = 4m ; m 3 = 8m ; r 2 = 0,5R 2 ; радиус инерции блока 2 i = 1,5r 2 . Каток 3 представляет собой сплошной однородный диск.

Решение

Изобразим силы, которые совершают элементарную работу на возможном перемещении s груза 1:

Запишем возможные перемещения всех тел через возможное перемещение груза 1:

Выразим линейные и угловые ускорения всех тел через искомое ускорение груза 1 (отношения такие же, как и в случае возможных перемещений):

.

Общее вариационное уравнение для данной задачи имеет вид:

Подставляя полученные ранее выражения для активных сил, сил инерции и возможных перемещений, после несложных преобразований получим

Так как s  0, следовательно, равно нулю выражение в скобках, содержащее ускорение а 1 , откуда a 1 = 5g /8,25 = 0,606g .

Для определения натяжения троса, удерживающего груз, освободим груз от троса, заменив действие его искомой реакцией . Под действием заданных сил ,и приложенной к грузу силы инерции
он находится в равновесии. Следовательно, к рассматриваемому грузу (точке) применим принцип Даламбера, т.е. запишем, что
. Отсюда
.

3.8.4. Уравнение Лагранжа 2-го рода

Обобщенные координаты и обобщенные скорости . Любые независимые между собой параметры, однозначно определяющие положение механической системы в пространстве, называют обобщенными координатами . Эти координаты, обозначаемые q 1 ,....q i , могут иметь любую размерность. В частности, обобщенные координаты могут быть перемещениями или углами поворота.

Для рассматриваемых систем число обобщенных координат равно числу степеней свободы. Положение каждой точки системы является однозначной функцией обобщенных координат

Таким образом, движение системы в обобщенных координатах определяется следующими зависимостями:

Первые производные от обобщенных координат называют обобщенными скоростями :
.

Обобщенные силы. Выражение для элементарной работы силы на возможном перемещении
имеет вид:

.

Для элементарной работы системы сил запишем

Используя полученные зависимости, это выражение можно записать в виде:

,

где обобщенная сила, соответствующая i -й обобщенной координате,


. (3.49)

Таким образом, обобщенной силой, соответствующей i -й обобщенной координате, является коэффициент при вариации этой координаты в выражении суммы элементарных работ активных сил на возможном перемещении системы. Для вычисления обобщенной силы необходимо сообщить системе возможное перемещение, при котором изменяется только обобщенная координата q i . Коэффициент при
и будет искомой обобщенной силой.

Уравнения движения системы в обобщенных координатах . Пусть дана механическая система с s степенями свободы. Зная действующие на нее силы, необходимо, составить дифференциальные уравнения движения в обобщенных координатах
. Применим процедуру составления дифференциальных уравнений движения системы – уравнений Лагранжа 2-го рода – по аналогии вывода этих уравнений для свободной материальной точки. Исходя из 2-го закона Ньютона, запишем

Получим аналог этим уравнениям, используя запись для кинетической энергии материальной точки,

Частная производная от кинетической энергии по проекции скорости на ось
равна проекции количества движения на эту ось, т.е.

Чтобы получить необходимые уравнения, вычислим производные по времени:

Полученная система уравнений является уравнениями Лагранжа 2-го рода для материальной точки.

Для механической системы уравнения Лагранжа 2-го рода представим в виде уравнений, в которых вместо проекций активных сил P x , P y , P z используют обобщенные силы Q 1 , Q 2 ,...,Q i и учитывают в общем случае зависимость кинетической энергии от обобщенных координат.

Уравнения Лагранжа 2-го рода для механической системы имеют вид:

. (3.50)

Их можно использовать для изучения движения любой механической системы с геометрическими, идеальными и удерживающими связями.

Пример 3 . Для механической системы (рис. 3.5), данные для которой приведены в предыдущем примере, составить дифференциальное уравнение движения, используя уравнение Лагранжа 2-го рода,

Решение

Механическая система имеет одну степень свободы. За обобщенную координату примем линейное перемещение груза q 1 = s ; обобщенная скорость – . С учетом этого запишем уравнение Лагранжа 2-го рода

.

Составим выражение для кинетической энергии системы

.

Выразим все угловые и линейные скорости через обобщенную скорость:

Теперь получим

Вычислим обобщенную силу, составив выражение элементарной работы на возможном перемещении s всех действующих сил. Без учета сил трения работу в системе производит только сила тяжести груза 1
Запишем обобщенную силу при s , как коэффициент в элементарной работе Q 1 = 5mg . Далее найдем

Окончательно дифференциальное уравнение движения системы будет иметь вид:

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Найдем сначала выражение принципа для одной материальной точки. Пусть на материальную точку с массой действует система активных сил, равнодействующую которых обозначим и реакция связи N (если точка является несвободной). Под действием всех этих сил точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением а.

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки.

Тогда оказывается, что движение точки обладает следующим свойством: если в любой момент времени к действующим на точку активным силам и реакции связи присоединить силу инерции, то полученная система сил будет уравновешенной, т. е.

Это положение выражает принцип Даламбера для материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает Перенося здесь величину та в правую часть равенства и учитывая обозначение (84), придем к соотношению (85). Наоборот, перенося в уравнении (85) величину в другую часть равенства и учитывая обозначение (84), получим выражение второго закона Ньютона.

Рассмотрим теперь механическую систему, состоящую из материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил (в которые входят и активные силы, и реакции связей) точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением Введя для этой точки силу инерции получим согласно равенству (85), что

т. е. что образуют уравновешенную систему сил. Повторяя такие рассуждения для каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы кроме действующих на нее внешних и внутренних сил присоединить соответствующие силы инерции, то полученная система сил будет уравновешенной и к ней можно применять все уравнения статики.

Математически принцип Даламбера для системы выражается векторными равенствами вида (85), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в § 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. § 141).

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причем, как показано в § 120, это справедливо для сил, действующих не только на твердое тело но и на любую изменяемую механическую систему.

Тогда на основании принципа Даламбера должно быть:

Введем обозначения:

Величины представляют собою главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств (86):

Применение уравнений (88), вытекающих из принципа Даламбера, упрощает процесс решения задач, так как эти уравнения не содержат внутренних сил. По существу уравнения (88) эквивалентны уравнениям, выражающим теоремы об изменении количества движения и главного момента количеств движения системы, и отличаются от них только по форме.

Уравнениями (88) особенно удобно пользоваться при изучении движения твердого тела или системы твердых тел. Для полного изучения движения любой изменяемой системы этих уравнений будет недостаточно, так же как недостаточно уравнений статики для изучения равновесия любой механической системы (см. § 120).

В проекциях на координатные оси равенства (88) дают уравнения, аналогичные соответствующим уравнениям статики (см. § 16, 30). Чтобы пользоваться этими уравнениями при решении задач, надо знать выражения главного вектора и главного момента сил инерций.

В заключение следует подчеркнуть, что при изучении движения по отношению к инерциальной системе отсчета, которое здесь и рассматривается, силы инерции вводятся только тогда, когда для решения задач применяется принцип Даламбера

Принцип Даламбера применяется при решении первой основной задачи динамики несвободной точки, когда известны движение точки и действующие на неё активные силы, а отыскивается возникающая реакция связи.

Запишем основное уравнение динамики несвободной точки в инерциальной системе отсчёта:

Перепишем уравнение в виде:

.

Обозначив , получим

, (11.27)

где вектор называется Даламберовой силой инерции .

Формулировка принципа: В каждый момент движения несвободной материальной точки активная сила и реакция связи уравновешиваются Даламберовой силой инерции .

Проектируя векторное уравнение (11.27) на какие-либо координатные оси, мы получим соответствующие уравнения равновесия, пользуясь которыми можно находить неизвестные реакции.

Спроектируем уравнение (11.27) на естественные оси:

(11.28)

где называется центробежной силой инерции, всегда направленной в отрицательную сторону главной нормали; .

Замечания:

1). В действительности к точке помимо сил и каких-либо других физических сил не приложено и три силы не составляют уравновешенную систему сил. В этом смысле Даламберова сила инерции является фиктивной силой, условно прикладываемой к точке.

2). Принцип Даламбера следует рассматривать как удобный методический прием, позволяющий задачу динамики свести к задаче статики.

Пример 1. Определим реакцию связи, действующую на лётчика при выходе самолёта, движущегося в вертикальной плоскости, из пикирующего полёта (рис.11.5).

На лётчика действует сила тяжести и реакция сидения . Применим принцип Даламбера, присоединив к этим силам Даламберову силу инерции:

(11.29)

Запишем уравнение (11.29) в проекциях на нормаль :

(11.30)

где r - радиус окружности при выходе самолёта на горизонтальный полёт,

Максимальная скорость самолёта в этот момент.

Из уравнения (11.30)

(11.31)

Пример 2. Определим теперь ту же реакцию, действующую на лётчика в момент выхода из режима набора высоты (рис.11.6).

Относительное движение материальной точки

Если системы отсчета движутся относительно инерциальной системы отсчета не поступательно, либо неравномерно или криволинейно движутся начала их координат, то такие системы отсчета являются неинерциальными . В этих системах отсчета аксиомы А 1 и А 2 не соблюдаются, но из этого не следует, что в динамике исследуются лишь движения, происходящие в инерциальных системах отсчета. Рассмотрим движение материальной точки в неинерциальной системе координат, если известны силы, действующие на материальную точку, и задано движение неинерциальной системы отсчета относительно инерциальной системы отсчета. В дальнейшем инерциальная система отсчета будет называться неподвижной, а неинерциальная – подвижной системой отсчета. Пусть - равнодействующая активных сил, действующих на точку, а - равнодействующая реакции связей; - неподвижная система координат; - подвижная система координат.

Рассмотрим движение материальной точки М (рис. 11.7), не связанной жестко с подвижной системой координат, а движущейся по отношению к ней. Это движение точки в кинематике называли относительным, движение точки относительно неподвижной системы координат – абсолютным, движение подвижной системы координат – переносным.


Основной закон динамики для абсолютного движения точки М будет иметь вид

(11.33)

где - абсолютное ускорение точки.

На основании теоремы сложения ускорений кинематики (теоремы Кориолиса) абсолютное ускорение складывается из относительного, переносного и кориолисова ускорений

. (11.34)

Подставляя (11.34) в (11.33), получим

и после переноса и ввода обозначений

(11.35)

где ; вектор называют переносной силой инерции; - кориолисовой силой инерции.

Равенство (11.35) выражает закон относительного движения точки. Следовательно, движение точки в неинерциальной системе отсчета можно рассматривать как движение в инерциальной системе, если к числу действующих на точку активных сил и реакций связей добавить переносную и кориолисову силы инерции.

Принцип Даламбера позволяет свести процесс составления уравнений динамики к составлению уравнений статики.

Этот принцип, который мы здесь изложим для свободной материальной точки и для точки, движущейся по поверхности или по кривой, применим к любой задаче динамики. Он позволит нам подвести итог всей теории движения точки.

Рассмотрим материальную точку М массы находящуюся под действием сил, равнодействующая которых имеет проекции Уравнения движения этой точки могут быть написаны так:

Будем рассматривать наряду с векторами, представляющими приложенные к точке М силы, вектор с проекциями - Этот вектор, численно равный произведению массы на ускорение и направленный противоположно ускорению, называется силой инерции, хотя это никоим образом не будет силой, приложенной к точке. Тогда уравнения выражают, что геометрическая сумма векторов и равна нулю, или, что в каждый момент времени существует равновесие между силой инерции и силами, действительно приложенными к точке.

Вывод уравнений движения из принципа Даламбера. На основании только что сказанного, для нахождения уравнений движения точки при любых условиях достаточно выразить, что имеет место равновесие между всеми силами, приложенными к точке, и силой инерции. Но это можно сделать методами статики. Можно, например, применить теорему о возможной работе. Для этого нужно различать среди сил, приложенных к точке, силы заданные и реакции связей. Через мы обозначим проекции заданных сил.

Чтобы написать, что существует равновесие между силами, действующими на точку, и силой инерции, достаточно написать, что на

всех возможных перемещениях допускаемых связями, существующими в момент сумма работ заданных сил и силы инерции Равна нулю:

Следует различать три случая:

1°. Свободная точка. произвольны. Если, как в п. 282, применяется произвольная система координат то, заменяя вариациями получим:

где произвольны.

Подставляя в равенство (2) и приравнивая результат нулю при произвольных получим уравнения движения в форме, указанной в п. 282, из которых мы вывели уравнения Лагранжа для свободной точки.

2°. Точка на поверхности. Пусть

есть уравнение поверхности, которая для общности предполагается движущейся. Давая переменному определенное значение, мы видим, что должны удовлетворять условию

выражающему, что возможное перемещение допускается связью, существующей в момент Если, как в п. 263, выразить координаты точки поверхности в функциях двух параметров, то получим

и соотношение (2) должно иметь место, каковы бы ни были Таким путем получатся уравнения движения в форме (4) п. 263. 3°. Точка на кривой. Пусть

Первоначально идея этого принципа была высказана Яковом Бернулли (1654-1705) при рассмотрении задачи о центре колебаний тел произвольной формы. В 1716 г. петербургский академик Я. Герман (1678 - 1733) выдвинул принцип статической эквивалентности «свободных» движений и «фактических» движений, т. е. движений, осуществляемых при наличии связей. Позже этот принцип был применен Л. Эйлером (1707- 1783) к задаче о колебаниях гибких тел (работа была опубликована в 1740 г.) и получил название «петер-бурского принципа». Однако первым, кто сформулировал рассматриваемый принцип в общем виде, хотя и не дал ему надлежащего аналитического выражения, был Даламбер (1717-1783). В своей «Динамике» вышедшей в 1743 г., он указал общий метод подхода к решению задач динамики несвободных систем. Аналитическое выражение этого принципа было дано позднее Лагранжем в его «Аналитической механике».

Рассмотрим некоторую несвободную механическую систему. Обозначим равнодействующую всех активных сил, действующих на какую-либо точку системы, через а равнодействующую реакций связей - через Тогда уравнение движения точки будет иметь вид

где - вектор ускорения точки, а масса этой точки.

Если ввести в рассмотрение силу называемую даламберовой силой инерциито уравнение движения (2.9) можно переписать в форме уравнения равновесия трех сил:

Уравнение (2.10) составляет существо принципа Даламбера для точки, а это же уравнение, распространенное на систему, - существо принципа Даламбера для системы.

Уравнение движения, написанное в форме (2.10), позволяет дать принципу Даламбера следующую формулировку: если систему находящуюся в движении, в какой-либо момент времени мгновенно остановить и к каждой материальной точке этой системы приложить действовавшие на нее в момент остановки активные силы реакции связей и даламберовы силы инерции то система останется в равновесии.

Принцип Даламбера представляет собой удобный методический прием решения динамических задач, так как позволяет уравнения движения несвободных систем написать в форме уравнений статики.

Этим самым, конечно, задача динамики не сводится к задаче статики, так как задача интегрирования уравнений движения по-прежнему сохраняется, но принцип Даламбера дает единый метод составления уравнений движения несвободных систем, и в этом его главное преимущество.

Если иметь в виду, что реакции представляют собой действие связей на точки системы, то принципу Даламбера можно дать и такую формулировку: если к активным силам действующим на точки несвободной системы, присоединить даламберовы силы инерции то результирующие этих сил уравновесятся реакциями связей. Следует подчеркнуть условность этой формулировки, так как в действительности

при движении системы никакого уравновешивания нет, поскольку силы инерции к точкам системы не приложены.

Наконец, принципу Даламбера можно дать еще одну эквивалентную формулировку, для чего уравнение (2.9) перепишем в такой форме: