Понятие переходный элемент обычно используется для обозначения любого элемента с валентными d- или f-электронами. Эти элементы занимают в периодической таблице переходное положение между электроположительными s-элементами и электроотрицательными p-элементами.

d-Элементы принято называть главными переходными элементами. Их атомы характеризуются внутренней застройкой d-подоболочек. Дело в том, что s-орбиталь их внешней оболочки обычно заполнена уже до того, как начинается заполнение d-орбиталей в предшествующей электронной оболочке. Это означает, что каждый новый электрон, добавляемый в электронную оболочку очередного d-элемента, в соответствии с принципом заполнения, попадает не на внешнюю оболочку, а на предшествующую ей внутреннюю подоболочку. Химические свойства этих элементов определяются участием в реакциях электронов обеих указанных оболочек.

d-Элементы образуют три переходных ряда - в 4-м, 5-м и 6-м периодах соответственно. Первый переходный ряд включает 10 элементов, от скандия до цинка. Он характеризуется внутренней застройкой 3d-орбиталей. Орбиталь 4s заполняется раньше, чем орбиталь 3d, потому что имеет меньшую энергию (правило Клечковского).

Следует, однако, отметить существование двух аномалий. Хром и медь имеют на своих 4s-орбиталях всего по одному электрону. Дело в том, что полузаполненные или полностью заполненные подоболочки обладают большей устойчивостью, чем частично заполненные подоболочки.

В атоме хрома на каждой из пяти 3d-орбиталей, образующих 3d-подоболочку, имеется по одному электрону. Такая подоболочка является полузаполненной. В атоме меди на каждой из пяти 3d-орбиталей находится по паре электронов. Аналогичная аномалия наблюдается у серебра.

Все d-элементы являются металлами.

Электронные конфигурации элементов четвертого периода от скандия до цинка:


Хром

Хром находится в 4-м периоде, в VI группе, в побочной подгруппе. Это металл средней активности. В своих соединениях хром проявляет степени окисления +2, +3 и +6. CrO - типичный основный оксид, Cr 2 O 3 - амфотерный оксид, CrO 3 - типичный кислотный оксид со свойствами сильного окислителя, т. е. рост степени окисления сопровождается усилением кислотных свойств.

Железо

Железо находится в 4-м периоде, в VIII группе, в побочной подгруппе. Железо - металл средней активности, в своих соединениях проявляет наиболее характерные степени окисления +2 и +3. Известны также соединения железа, в которых оно проявляет степень окисления +6, которые являются сильными окислителями. FeO проявляет основные, а Fe 2 O 3 - амфотерные с преобладанием основных свойств.

Медь

Медь находится в 4-м периоде, в I группе, в побочной подгруппе. Ее наиболее устойчивые степени окисления +2 и +1. В ряду напряжений металлов медь находится после водорода, ее химическая активность не очень велика. Оксиды меди: Cu2O CuO. Последний и гидроксид меди Cu(OH)2 проявляют амфотерные свойства с преобладанием основных.

Цинк

Цинк находится в 4-м периоде, во II-группе, в побочной подгруппе. Цинк относится к металлам средней активности, в своих соединениях проявляет единственную степень окисления +2. Оксид и гидроксид цинка являются амфотерными.

Элементы в периодической системе Менделеева делятся на s-, p-, d-элементы. Это подразделение осуществляется на основе того, сколько уровней имеет электронная оболочка атома элемента и каким уровнем заканчивается заполнение оболочки электронами.

К s-элементам относят элементы IA-группы – щелочные металлы . Электронная формула валентной оболочки атомов щелочных металлов ns1 . Устойчивая степень окисления равна +1. Элементы IА-группы обладают сходными свойствами из-за сходного строения электронной оболочки. При увеличении радиуса в группе Li-Fr связь валентного электрона с ядром слабеет и уменьшается энергия ионизации. Атомы щелочных элементов легко отдают свой валентный электрон, что характеризуют их как сильные восстановители.

Восстановительные свойства усиливаются с возрастанием порядкового номера.

К p-элементам относятся 30 элементов IIIA-VIIIA-групп периодической системы; p-элементы расположены во втором и третьем малых периодах, а также в четвертом-шестом больших периодах. Элементы IIIА-группы имеют один электрон на p-орбитали. В IVА-VIIIА -группах наблюдается заполнение p-подуровня до 6 электронов. Общая электронная формула p-элементов ns2np6 . В периодах при увеличении заряда ядра атомные радиусы и ионные радиусы p-элементов уменьшаются, энергия ионизации и сродство к электрону возрастают, электроотрицательность увеличивается, окислительная активность соединений и неметаллические свойства элементов усиливаются. В группах радиусы атомов увеличиваются. От 2p-элементов к 6p-элементам энергия ионизации уменьшается. Усиливаются металлические свойства p-элемента в группе с увеличением порядкового номера.

К d-элементам относятся 32 элемента периодической системы IV–VII больших периодов . В IIIБ-группе у атомов появляется первый электрон на d-орбитали, в последующих Б-группах d-подуровень заполняется до 10 электронов. Общая формула внешней электронной оболочки (n-1)dansb, где a=1?10, b=1?2 . С увеличением порядкового номера свойства d-элементов изменяются незначительно. У d-эле-ментов медленно происходит возрастание атомного радиуса, также они имеют переменную валентность, связанную с незавершенностью предвнешнего d-электронного подуровня. В низших степенях окисления d-элементы обнаруживают металлические свойства, при увеличении порядкового номера в группах Б они уменьшаются. В растворах d-элементы с высшей степенью окисления обнаруживают кислотные и окислительные свойства, при низших степенях окисления – наоборот. Элементы с промежуточной степенью окисления проявляют амфотерные свойства.

8. Ковалентная связь. Метод валентных связей

Химическая связь, осуществляемая общими электронными парами, возникающих в оболочках связываемых атомов, имеющих антипараллельные спины, называется атомной, или ковалентной связью. Ковалентная связь двухэлектронная и двуцентровая (удерживает ядра). Она образуется атомами одного вида – ковалентная неполярная – новая электронная пара, возникшая из двух неспаренных электронов, становится общей для двух атомов хлора; и атомами разного вида, сходных по химическому характеру – ковалентная полярная. Элементы с большей электроотрицательностью (Cl) будут оттягивать общие электроны от элементов с меньшей электроотрицательностью (Н). Атомы с непарными электронами, имеющими параллельные спины, отталкиваются – химическая связь не возникает. Способ образования ковалентной связи называется обменным механизмом .

Свойства ковалентной связи. Длина связи – межъядерное расстояние. Чем это расстояние короче, чем прочнее химическая связь. Энергия связи – количество энергии, требующееся для разрыва связи. Величина кратности связи прямо пропорциональна энергии связи и обратно пропорциональна длине связи. Направленность связи – определенное расположение электронных облаков в молекуле. Насыщаемость – способность атома образовывать определенное количество ковалентных связей. Химическая связь, образованная перекрыванием электронных облаков вдоль оси, соединяющей центры атомов, называется ?-связью. Связь, образованная перекрыванием электронных облаков перпендикулярно оси, соединяющей центры атомов, называется ?-связью . Пространственная направленность ковалентной связи характеризуется углами между связями. Эти углы называются валентными углами. Гибридизация – процесс перестройки неравноценных по форме и энергии электронных облаков, ведущих к образованию одинаковых по тем же параметрам гибридных облаков. Валентность – число химических связей (ковалентных ), посредством которых атом соединен с другими. Электроны, участвующие в образовании химических связей, называются валентными . Число связей между атомами равно числу его неспаренных электронов, участвующих в образовании общих электронных пар, поэтому валентность не учитывает полярность и не имеет знака. В соединениях, в которых отсутствует ковалентная связь, имеет место степень окисления – условный заряд атома, исходный из предположения, что оно состоит из положительно или отрицательно заряженных ионов. К большинству неорганических соединений применимо понятие степень окисления.

1) s-блок в периодической таблице элементов - электронная оболочка, включающая в себя первые два слоя s-электронов. Данный блок включает в себя щелочные металлы, щелочноземельные металлы, водород и гелий. Эти элементы отличаются тем, что в атомном состоянии высокоэнергичный электрон находится на s-орбитали. Исключая водород и гелий, эти электроны очень легко переходят и формируются в позитивные ионы при химической реакции. Конфигурация гелия химически весьма стабильна, следовательно, именно по этому гелий не имеет стабильных изотопов; иногда, благодаря этому свойству, его объединяют с инертными газами. Остальные элементы, имеющие этот блок, все без исключения являются сильными восстановителями и поэтому в свободном виде в природе не встречаются. Элемент в металлическом виде может быть получен только с помощью электролиза растворенной в воде соли. Дэви Гемфри, в 1807 и 1808 году, стал первым кто отсоединил соли кислот от s-блок-металлов, за исключением лития, бериллия, рубидия и цезия. Бериллий был впервые отделен от солей независимо двумя учёными: Ф. Вулером и А. А. Бази в 1828 году, в то время как литий был сепарирован Р. Бунзеном только в 1854 году, который, после изучения рубидия, отделил его спустя 9 лет. Цезий не был выделен в чистом виде вплоть до 1881 года, после того как Карл Сеттерберг подверг электролизу цианид цезия. Твердость элементов, имеющих s-блок, в компактном виде (при обычных условиях) может варьироваться от очень малой (все щелочные металлы - их можно разрезать ножом) до довольно высокой (бериллий). Исключая бериллий и магний, металлы очень реакционноспособны и могут быть использованы в сплавах со свинцом в малых количествах (<2 %). Бериллий и магний, ввиду их высокой стоимости, могут быть ценными компонентами для деталей, где требуется твёрдость и лёгкость. Эти металлы являются чрезвычайно важными, поскольку позволяют сэкономить средства при добыче титана, циркония, тория и тантала из их минеральных форм; могут находить своё применение как восстановители в органической химии.

Опасность и хранение

Все элементы, имеющие s-оболочку, являются опасными веществами. Они пожароопасны, требуют особого пожаротушения, исключая бериллий и магний. Храниться должны в инертной атмосфере аргона или углеводородов. Бурно реагируют с водой, продуктом реакции является водород, например:

Исключая магний, который реагирует медленно, и бериллия, который реагирует только когда его оксидная плёнка снята с помощью ртути. Литий имеет схожие свойства с магнием, так как находится, относительно периодической таблицы, рядом с магнием.

P-блок в периодической таблице элементов - электронная оболочка атомов, валентные электроны которых с наивысшей энергией занимают p-орбиталь.


В p-блок входят последние шесть групп, исключая гелий (который находится в s-блоке). Данный блок содержит все неметаллы (исключая водород и гелий) и полуметаллы, а также некоторые металлы.

P-блок содержит в себе элементы, которые имеют различные свойства, как физические, так и механические. P-блок-неметаллы - это, как правило, высокореакционные вещества, имеющие сильную электроотрицательность, p-металлы - умеренно активные металлы, причём их активность повышается к низу таблицы химических элементов

Свойства d- и f-элементов. Привести примеры.

D-блок в периодической таблице элементов - электронная оболочка атомов, валентные электроны которых с наивысшей энергией занимают d-орбиталь.

Данный блок представляет собой часть периодической таблицы; в него входят элементы от 3 до 12 группы. Элементы данного блока заполняют d-оболочку d-электронами, которая у элементов начинается s2d1 (третья группа) и заканчивается s2d10 (двенадцатая группа). Однако, существуют некоторые нарушения в этой последовательности, например, у хрома s1d5 (но не s2d4) вся одиннадцатая группа имеет конфигурацию s1d10 (но не s2d9). Одиннадцатая группа имеет заполненные s- и d-электроны.

D-блок-элементы так же известны как переходные металлы или переходные элементы. Однако, точные границы, отделяющие переходные металлы от остальных групп химических элементов, еще не проведены. Хотя некоторые авторы считают, что элементы, входящие в d-блок, являются переходными элементами, в которых d-электроны являются частично заполненными либо в нейтральных атомах или ионах, где степень окисления равна нулю. ИЮПАК в данное время принимает такие исследования как достоверные, и сообщает, что это относится только к 3-12 группам химических элементов. У металлов 12ой группы отсутствуют явно выраженные химические и физические свойства, это объясняется неполным заполнением d подоболочки, поэтому их можно считать и постпереходными металлами. Так же было пересмотрено историческое применение термина «переходные элементы» и d-блока.

В s-блоке и p-блоке периодической таблицы аналогичные свойства, через периоды, как правило, не наблюдаются: самые важные свойства усиливаются по вертикали у нижних элементов данных групп. Примечательно, что различия элементов входящих в d-блок по горизонтали, через периоды, становятся более выраженными.

Лютеций и лоуренсий находятся в d-блоке, и они не считаются переходными металлами, но лантаноиды и актиноиды, что примечательно, таковыми считаются с точки зрения ИЮПАК. Двенадцатая группа химических элементов хоть и находится в d-блоке, однако считается, что входящие в неё элементы являются постпереходными элементами

Задание 1

1) Периодический закон Д.И.Менделеева, его современная формулировка. 2) Структура периодический системы с точки зрения строения атома.3) Периодичность изменения свойств атома: энергия ионизации, электронегатисность, энергия средство к электрону. 4) Основные классы химических соединений. 5) Классификация биогенных элементов. 6) Качественное и количественное содержание макро- и микроэлементов в организме человека. 7) Элементы – органогены.

Периодический закон – фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.

Формулировка периодического закона, данная Д.И. Менделеевым, гласила: свойства химических элементов находятся в периодической зависимости от атомных масс этих элементов. Современная формулировка гласит: свойства химических элементов находятся в периодической зависимости от заряда ядра этих элементов. Такое уточнение потребовалось, поскольку к моменту установления Менделеевым периодического закона еще не было известно о строении атома. После выяснения строения атома и установления закономерностей размещения электронов по электронным уровням стало ясно, что периодическая повторяемость свойств элементов связана с повторяемостью строения электронных оболочек.

Периодическая система – графическое изображение периодического закона, суть которого в том, то с увеличением заряда ядра периодически повторяется строение электронной оболочки атомов, а значит будут периодически изменяться свойства химических элементов и их соединений.

Свойство элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер и атомов.

Энергия ионизации – разновидность энергии связи, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическим (основном) состоянии на бесконечность.

Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят также восстановительные свойства соответствующего простого вещества. Энергия ионизации элементов измеряется в электронвольт на 1 атом или джоуль на моль.



Сродство к электрону – энергия, которая выделяется или поглощается вследствие присоединения электрона к изолированному атому, находящемуся в газообразном состоянии. Выражается в килоджоулях на моль (кДж/моль) или электрон-вольтах (эВ). Оно зависит от тех же факторов, что и энергия ионизации.

Электроотрицательность – относительная способность атомов элемента притягивать к себе электроны в любом окружении. Она напрямую зависит от радиуса или размера атома. Чем радиус меньше, тем сильнее он будет притягивать электроны от другого атома. Поэтому, чем выше и правее стоит элемент в периодической таблице, тем меньше у него радиус и больше электроотрицательность. По существу, электроотрицательность определяет вид химической связи.

Химическое соединение – сложное вещество, состоящее из химически связанных атомов двух или более элементов. Делятся на классы: неорганические и органические.

Органические соединения – класс химических соединений, в состав которых входит углерод (есть исключения). Основные группы органических соединений: углеводороды, спирты, альдегиды, кетоны, карбоновые кислоты, амиды, амины.

Неорганические соединения – химические соединение, которое не является органическим, то есть оно не содержит углерода. Неорганические соединения не имеют характерного для органических соединений углеродного скелета. Делятся на простые и сложные (оксиды, основания, кислоты, соли).

Химический элемент – совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающих с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свое латинское название химический символ, состоящий з одной или пары латинских букв, регламентированные ИЮПАК и приводятся в таблице Периодической системы элементов Менделеева.

В составе живого вещества найдено более 70 элементов.

Биогенные элементы – элементы, необходимые организму для построения и жизнедеятельности клеток и органов. Существует несколько классификаций биогенных элементов:

А) По их функциональной роли:

1) органогены, в организме их 97% (C, H, O, N, P, S);

2) элементы электролитного фона (Na, K, Ca, Mg, Cl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) микроэлементы – биологически активные атомы центров ферментов, гормонов (переходные металлы).

Б) По концентрации элементов в организме:

1) макроэлементы – содержание превышает 0,01% от массы тела (Fe, Zn, I, Cu, Mn, Cr, F, Mo, Co, Ni, B, V, Si, Al, Ti, Sr, Se, Rb, Li)

2) микроэлементы – содержание составляет величину порядка 0,01%. Большинство содержится в основном в тканях печени. Некоторые микроэлементы проявляют сродство к определенным тканям (йод – к щитовидной железе, фтор – к эмали зубов, цинк – к поджелудочной железе, молибден – к почкам). (Ca, Mg, Na, K, P,Cl, S).

3) ультрамикроэлементы – содержание меньше чем 10-5%. Данные о количестве и биологическом роли многих элементов не выявлены до конца.

Органы-депо микроэлементов:

Fe - Накапливается в эритроцитах, селезенке, печени

К - Накапливается в сердце, скелетных и гладких мышцах, плазме крови, нервной ткани, почках.

Mn - органы-депо: кости, печень, гипофиз.

P - органы-депо: кости, белковые вещества.

Ca - органы-депо: кости, кровь, зубы.

Zn - органы-депо: печень, простата, сетчатка.

I - Органы-депо: щитовидная железа.

Si - органы-депо: печень, волосы, хрусталик глаза.

Mg - органы-депо: биологические жидкости, печень

Cu - органы-депо: кости, печень, желчный пузырь

S - органы-депо: соединительная ткань

Ni - органы-депо: легкие, печень, почки, поджелудочная железа, плазма крови.

Биологическая роль макро- и микроэлементов:

Fe - участвует в кроветворении, дыхании, иммунобиологических и окислительно-восстановительных реакциях. При недостатке развивается анемия.

К - участвует в мочеиспускании, возникновении потенциала действия, поддержание осмотического давления, синтез белков.

Mn - Влияет на развитие скелета, участвует в реакциях иммунитета, в кроветворении и тканевом дыхании.

P - сочетает последовательные нуклеотиды в нитях ДНК и РНК. АТФ, служит главным энергетическим носителем клеток. Формирует клеточные мембраны. Прочность костей определяется наличие в них фосфатов.

Ca - участвует в возникновении нервного возбуждения, в свертывающей функций крови, обеспечивает осмотическое давление крови.

Co - Ткани в которых обычно скапливается микроэлемент: кровь, селезенка, кость, яичники, печень, гипофиз. Стимулирует кроветворение, участвует в синтезе белков и углеводном обмене.

Zn - участвует в кроветворении, участвует в деятельности желез внутренней секреции.

I - Нужен для нормального функционирования щитовидной железы, влияет на умственные способности.

Si - способствует синтезу коллагена и образования хрящевой ткани.

Mg - участвует в различных реакциях метаболизма: синтез ферментов, белков др. кофермент синтеза витаминов группы В.

Cu - Влияет на синтез гемоглобина, эритроцитов, белков, кофермент синтеза витаминов группы В.

S - Влияет на состояние кожных покровов.

Ag - Антимикробная активность

Ni - стимулирует синтез аминокислот в клетке, повышает активность пепсина, нормализует содержание гемоглобина, улучшает генерацию белков плазмы.

Элементы-органогены - химические элементы, составляющие основу органических соединений (C, H, O, N, S, P). В биологии органогенными называют четыре элемента, которые вместе составляют около 96-98% массы живых клеток (C, H, O, N).

Карбон - важнейший химический элемент для органических соединений. Органические соединения по определению - это соединения углерода. Он четырехвалентен и способен формировать прочные ковалентные связи между собой.

Роль водорода в органических соединениях в основном заключается в связывании тех электронов атомов углерода, которые не участвуют в образовании межкарбонових связей в составе полимеров. Однако, водород участвует в образовании нековалентных водородных связей.

Вместе с карбоном и водородом, кислород входит в многих органических соединений в составе таких функциональных групп как гидроксильная, карбонильная, карбоксильная и тому подобное.

Азот зачастую входит в состав органических веществ в форме аминогруппы или гетероцикла. Он является обязательным химическим элементом в составе. Азот входит также в состав азотистых оснований, остатки которых содержатся в нуклеозиды и нуклеотиды.

Серы входит в состав некоторых аминокислот, в частности метионина и цистеина. В составе белков между атомами серы остатков цистеина устанавливаются дисульфидные связи, обеспечивающие формирование третичной структуры.

Фосфатные группы, то есть остатки ортофосфорной кислоты входят в состав таких органических веществ как нуклеотиды, нуклеиновые кислоты, фосфолипиды, фосфопротеины.

Задание 2,3,4

Биогенные s- и p- элементы. Связь между электронным строением s- и p- элементов и их биологическими функциями. Соединения s- и p- в медицине.